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Preface

Blockchains enable new trust architectures. These architectures are not just distributed
but they are also decentralised. This means that no single person or entity is specifically
in charge of running the system – no one runs the show. Instead, the system is arranged
in a way that many unrelated agents are collectively in charge. From their collective effort
emerges ideally a perfect and transparent trusted third party. It is not easy to organise the
production of such a decentralised resource. It is the work of the blockchain engine – or
consensus algorithm – to keep the many operators with consistent views of the system and
to make the system reliable and dependable. Systems built in this way offer no specific point
of failure – so the story goes. For the same reason, they are hard and costly to attack, as the
adversary needs to recruit massive resources to coordinate sufficiently many agents to take
over the system.

Blockchains have been around for some time now and continue to grow in use and in
diversity of services and underpinning mechanisms. There are many trust engines – each with
different trade-offs between various criteria of performance and various levels of maturity.
The creativity in the field is truly staggering and a consequence of its openness. Note that
openness is a natural correlate of decentralisation: if the system is closed, it is the beginning
of an inventory of the various agents and one eventually will come to know who they are.
People love openness as they have direct access to the levers of governance/consensus and
monetary policies, things most people never get to see in a lifetime except when playing video
games maybe. This combination of openness and of having a computational substrate opens
up new algorithmic economic spaces. Voting, allocation, rewards, monetary policies, pricing
cascades, tax systems everything is up for reinvention in a framework where everything can
be seen and everyone sees that rules are correctly applied. In this enthusiastic universe we
have already seen crises, collapses, and subsequent evolution. We have now some data points
and an incipient understanding of what works and what not.

However, there are many things the field still needs to improve. One which is most
frequently mentioned is the need to scale up decentralised systems to a level comparable to
that of the traditional trust systems they purport to replace (at least in part). Another one
is the ability to offer confidentiality-preserving modes of operation as the need of secrecy is
often a necessity in business transactions. Also it would help if the price of the collective
computational resource was lower (compared to centralised cloud computing) and more
predictable.

But there are other pressing and perhaps more difficult questions. No matter what
technique is used for consensus, it all relies on a key assumption: namely that the multiple
agents in charge are independent or approximately so - and will therefore act neutrally with
respect to the users and be only driven by their own interests. Agents do not collude -
it is assumed. The trust therefore derives not from traditional reputation-and-regulation
mechanisms but from this neutrality postulate on which everything blockchain hinges. For
this assumption to be realistic, one needs many agents - so many that no actor can summon
enough resources to corrupt or otherwise control a sufficiently large subset of the agents of
the system.

It follows that such systems are harder to update and to set back on a good course
should there be a problem. It is a logical necessity that the system has no single point of
accountability. It is also hard to repair or amend a system with many independent operators.
One needs means of coordination and yet no means of collusion. It sounds difficult and it is!
International Conference on Blockchain Economics, Security and Protocols (Tokenomics 2019).
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OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


0:viii Preface

One fundamental need of the economic world may be a need for some level of reversibility
that is hard to combine with decentralised mechanisms. Another aspect of the coordination-
without-collusion problem is that there is not even the common legally operative notion of a
“one” agent - meaning the various software agents (commonly called nodes, miners, block
makers, and users) that maintain and provide the computational resources of the system
are not legal entities (persons or other type of legal entity such as firms). This is another
fundamental and fundamentally unanswered question at the time of writing. Namely, how
one can even define and measure – let alone incentivise – decentralisation. Counting how
many nodes there are can only be a proxy. This is one aspect of the famous Sybil problem:
namely the near-zero cost of creating new on-line pseudo-identities. Yet another unavoidable
correlate of decentralisation is that agents in the system need to find an incentive to maintain
that system - and that incentive has to be baked in the decentralised operation (else the
nodes are someone’s employee or friends and the system is no longer de-centralised).

The ambition of the conference we have organised – which we hope will be the first
of a series – was specifically to cater to this broad type of questions around the incentive
structures that are needed to keep up and stabilize decentralised systems. How does one
measure, induce, and monitor “decentralised” in a decentralised environment. If trust is
a resource, how much trust does one need for what usage and at what price. How does
one design incentives that will hold the trust-providing system together, keep its different
actors happy, and foster stability and resilience. Specifically, how does one set up the rules
for the allocation of platform profits, and how does one handle the profit/price dilemma.
That is to say how can one reconcile profit distribution rules with the price of the system’s
own token/cryptocurrency which is the means by which incentives are implemented. Token
holders want a high price but platform contributors want a high profit.

There is need for methodological guidance to find both pen and paper and data-driven
solution paths to the key questions above; to produce tools that will help designers of
decentralised socio-technical systems to ’science out’ fundamental difficulties; to reinforce
and build better trust structures with sound economics; and understand the complex multi-
objective optimisation which is implied. We hope this conference and its subsequent editions
will provide a favourable space for the further exploration of these new territories in computer
science and economics.

For this first edition, there were 38 papers submitted: 23 papers in computer science
(17 as regular papers for publication in the proceedings and 6 for presentation only) and
16 papers in economics. The computer science program committee selected 11 papers for
publication and presentation and 3 papers for presentation only. The economics program
committee selected 8 papers for presentation at the conference. Every submitted paper was
evaluated by at least three members of the program committee.

The program included two keynotes lecture in computer science by Amr El Abbadi
(UCSB, USA) and Dahlia Malkhi (VMware, USA) and two keynotes lectures in economics
by Lin William Cong (University of Chicago Booth School of Business, USA) and Catherine
Casamatta (Toulouse School of Economics, France). The abstracts of the keynote lectures in
computer science are included in this volume.

The best paper award was presented by William George and Clement Leseage for
the paper:a Smart Contract Oracle for Approximating Real-World, Real Number Values.
The paper was awarded with the “Asseth - Kaiko Prize for Research in Cryptoeconomics”
(1,500 euros).

The success of this first edition was the result of a team effort. We thank the authors
for providing valuable content for the conference and the program committee who worked
hard in reviewing papers and giving feedback to the authors. We also thank the Ecole
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Normale Superieure who hosted the conference, our institutional supporters, CEA LIST,
CNRS, CREST, ENS, Sorbonne Université, and our financial supporters, Asseth-Kaiko,
Capgemini, Institut Carnot. Finally, we want to thank our wonderful students and colleagues,
Antonella, Yackolley, Pablo, Gewu, Nicolas, Zeinab, Zainah, Agnès, Onder, Thibault, Aimen
and Francois that helped with all the logistics of the conference.

Maria, Vincent, Sara, Julien and Maurice
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Demystifying Blockchains: Decentralized and
Fault-Tolerant Storage for the Future of Big
Data?
Amr El Abbadi1

University of California of Santa Barbara, USA

Abstract
Bitcoin is a successful and interesting example of a global scale peer-to-peer cryptocurrency that
integrates many techniques and protocols from cryptography, distributed systems, and databases.
The main underlying data structure is blockchain, a scalable fully replicated structure that is shared
among all participants and guarantees a consistent view of all user transactions by all participants
in the cryptocurrency system. The novel aspect of Blockchain is that historical data about all
transactions is maintained in the absence of any central authority. This property of Blockchain
has given rise to the possibility that future applications will transition from centralized databases
to a fully decentralized storage based on blockchains. In this talk, we start by developing an
understanding of the basic protocols used in blockchain, and elaborate on their main advantages and
limitations. To overcome these limitations, we will explore some of the challenges of managing large
scale fully replicated ledgers in the context of achieving large scale consensus. Finally, we ponder
over recent efforts to use blockchains in diverse applications.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases distributed algorithms for databases, distributed storage, blockchains

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2019.1

Category Keynote Lecture

Bio. Amr El Abbadi is a Professor of Computer Science at the University of California,
Santa Barbara. He received his B. Eng. from Alexandria University, Egypt, and his Ph.D.
from Cornell University. Prof. El Abbadi is an ACM Fellow, AAAS Fellow, and IEEE Fellow.
He was Chair of the Computer Science Department at UCSB from 2007 to 2011. He has
served as a journal editor for several database journals, including, The VLDB Journal, IEEE
Transactions on Computers and The Computer Journal. He has been Program Chair for
multiple database and distributed systems conferences. He currently serves on the executive
committee of the IEEE Technical Committee on Data Engineering (TCDE) and was a board
member of the VLDB Endowment from 2002 to 2008. In 2007, Prof. El Abbadi received
the UCSB Senate Outstanding Mentorship Award for his excellence in mentoring graduate
students. In 2013, his student, Sudipto Das received the SIGMOD Jim Gray Doctoral
Dissertation Award. Prof. El Abbadi is also a co-recipient of the Test of Time Award at
EDBT/ICDT 2015. He has published over 300 articles in databases and distributed systems
and has supervised over 35 PhD students.

1 in collaboration with: Divy Agrawal, Mohammad Amiri, Sujaya Maiyya, Victor Zakhary
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Flexible BFT: Separating BFT Protocol Design
from the Fault Model
Dahlia Malkhi
VMWare
https://dahliamalkhi.wordpress.com/

Abstract
Byzantine Fault Tolerant (BFT) protocols designed for building replicated services collapse if deployed
under settings that differ from the fault model they are designed for. For example, in a partial-
synchrony model, a known lower bound for BFT is 1/3. Optimal-resilience solutions completely break
if the fraction of Byzantine faults exceeds 1/3. The only way we know to achieve > 1/3 resilience is
by assuming synchrony, but this requires the protocol to be designed with that assumption. Flexible
BFT is a new approach to BFT protocol design that separates between the fault model and the
solution. Clients in Flexible BFT specify (i) the adversarial threshold they need to tolerate, and (ii)
whether they believe in synchrony (and the presumed bound on transmission delays). We present
a Flexible BFT solution that simultaneously supports different clients, who differ simply by the
number of messages and/or time the clients are willing to wait for. At an even finer grain, Flexible
BFT supports under the same solution high-value and low-value transactions, each tolerating a
different threat model.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Byzantine fault-tolerance, blockchains

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2019.2

Category Keynote Lecture

Bio. Dahlia Malkhi carries applied and foundation research in broad aspects of reliability
and security in distributed systems since the early nineties. In 2014, after the closing of
the Microsoft Research Silicon Valley lab, she co-founded VMware Research and became a
Principal Researcher at VMware. From 2004-2014, she was a principal researcher at Microsoft
Research, Silicon Valley. From 1999-2007, she was a tenured associate professor at the Hebrew
University of Jerusalem. In 2004, leaving for a brief sabbatical at Microsoft Research, she was
bitten by the Silicon Valley bug and stayed there. Dr. Malkhi was elected ACM fellow in 2011,
received the IBM Faculty award in 2003 and 2004, and the German-Israeli Foundation (G.I.F.)
Young Scientist career award 2002. She currently co-leads the VMware blockchain research
project. In the past decade, she founded and led the Corfu project, a database-less database.
The Corfu data platform currently drives VMware’s NSX-T distributed control plane.
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A Puff of Steem: Security Analysis of
Decentralized Content Curation
Aggelos Kiayias
University of Edinburgh, United Kingdom
IOHK, Hong Kong

Benjamin Livshits
Imperial College of London, United Kingdom
Brave Software, United Kingdom

Andrés Monteoliva Mosteiro
University of Edinburgh, United Kingdom
Clearmatics, London, United Kingdom

Orfeas Stefanos Thyfronitis Litos1

University of Edinburgh, United Kingdom
o.thyfronitis@ed.ac.uk

Abstract
Decentralized content curation is the process through which uploaded posts are ranked and filtered
based exclusively on users’ feedback. Platforms such as the blockchain-based Steemit2 employ this
type of curation while providing monetary incentives to promote the visibility of high quality posts
according to the perception of the participants. Despite the wide adoption of the platform very
little is known regarding its performance and resilience characteristics. In this work, we provide a
formal model for decentralized content curation that identifies salient complexity and game-theoretic
measures of performance and resilience to selfish participants. Armed with our model, we provide
a first analysis of Steemit identifying the conditions under which the system can be expected to
correctly converge to curation while we demonstrate its susceptibility to selfish participant behaviour.
We validate our theoretical results with system simulations in various scenarios.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases blockchain, content curation, decentralized, voting

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2019.3

Related Version A full version of the paper is available at https://arxiv.org/abs/1810.01719.

1 Introduction

The modern Internet contains an immense amount of data; a single user can only consume
a tiny fraction in a reasonable amount of time. Therefore, any widely used platform that
hosts user-generated content (UGC) must employ a content curation mechanism. Content
curation can be understood as the set of mechanisms which rank, aggregate and filter relevant
information. In recent years, popular news aggregation sites like Reddit3 or Hacker News4
have established crowdsourced curation as the primary way to filter content for their users.
Crowdsourced content curation, as opposed to more traditional techniques such as expert- or

1 Contact author
2 https://steemit.com/ Accessed: 2019-01-02
3 https://www.reddit.com/ Accessed: 2019-01-02
4 https://news.ycombinator.com/ Accessed: 2019-01-02
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3:2 A Puff of Steem: Security Analysis of Decentralized Content Curation

algorithmic-based curation, orders and filters content based on the ratings and feedback of
the users themselves, obviating the need for a central moderator by leveraging the “wisdom
of the crowd” [3, 46].

The decentralized nature of crowdsourced curation makes it a suitable solution for
ranking user-generated content in blockchain-based content hosting systems. The aggregation
and filtering of user-generated content emerges as a particularly challenging problem in
permissionless blockchains, as any solution that requires a concrete moderator implies that
there exists a privileged party, which is incompatible with a permissionless blockchain.
Moreover, public blockchains are easy targets for Sybil attacks [10], as any user can create
new accounts at any time for a marginal cost. Therefore, on-chain mechanisms to resist the
effect of Sybil users are necessary for a healthy and well-functioning platform; traditional
counter-Sybil mechanisms [29] are much harder to apply in the case of blockchains due to
the decentralized nature of the latter. The functions performed by moderators in traditional
content platforms need to be replaced by incentive mechanisms that ensure self-regulation.
Having the impact of a vote depend on the number of coins the voter holds is an intuitively
appealing strategy to achieve a proper alignment of incentives for users in decentralized
content platforms; specifically, it can render Sybil attacks impossible.

However, the correct design of such systems is still an unsolved problem. Blockchains
have created a new economic paradigm where users are at the same time equity holders in the
system, and leveraging this property in a robust manner constitutes an interesting challenge.
A variety of projects have designed decentralized content curation systems [27, 42, 16].
Nevertheless, a deep understanding of the properties of such systems is still lacking. Among
them, Steemit has a long track record, having been in operation since 2016 and attaining
a user base of more than 1.08 M5 registered accounts6. Steemit is a social media platform
which lets users earn money (in the form of the STEEM cryptocurrency) by both creating and
curating content in the network. Steemit is the front-end of the social network, a graphical
web interface which allows users to see the content of the platform. On the other hand, all
the back-end information is stored on a distributed ledger, the Steem blockchain. Steem can
be understood as an “app-chain”, a blockchain with a specific application purpose: serving
as a distributed database for social media applications [42].

1.1 Our Contributions
In this work we study the foundations of decentralized content curation from a computational
perspective. We develop an abstract model of a post-voting system which aims to sort the
posts created by users in a distributed and crowdsourced manner. Our model is constituted
by a functionality which executes a protocol performed by N players. The model includes an
honest participant behaviour while it allows deviations to be modeled for a subset of the
participants. The N players contribute votes in a round-based curation process. The impact
of each vote depends on the number of coins held by the player. The posts are arranged in
a list, sorted by the value of votes received, resembling the front-page model of Reddit or
Hacker News. In the model, players vote according to their subjective opinion on the quality
of the posts and have a limited attention span.

Following previous related work [14, 3], we represent each player’s opinion on each post
(i.e. likability) with a numerical value l ∈ [0, 1]. The objective quality of a post is calculated
as the simple summation of all players’ likabilities for the post in question. To measure

5 https://steemdb.com/accounts Accessed: 2019-01-02
6 The number of accounts should not be understood as the number of active users, as one user can create
multiple accounts.

https://steemdb.com/accounts
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the effectiveness of a post-voting system, we introduce the property of convergence under
honesty which is parameterised by a number of values including a metric t, that demands the
first t articles to be ordered according to the objective quality of the posts at the end of the
execution assuming all participants signal honestly to the system their personal preferences.
Armed with our post-voting system abstraction, we proceed to particularize it to model
Steemit and provide the following results.

(i) We characterise the conditions under which the Steemit algorithm converges under
honesty. Our results highlight some fundamental limitations of the actual Steemit
parameterization. Specifically, for curated lists of length bigger than 70 the algorithm
may not achieve even 1-convergence.

(ii) We validate our results with a simulation testing different metrics based on correlation
that have been proposed in previous works [25, 37] and relating them to our notion of
convergence.

(iii) We demonstrate that “selfish” deviation from honest behavior results to substantial
gains in terms of boosting the ranking of specific posts in the resulting list of the
post-voting system, and to a grave reduction of the quality of said list.

1.2 Steem consensus algorithm
In a nutshell, Delegated Proof of Stake [8, 36, 41] works as follows: Steem users can sign up
as “validator” candidates for one of 21 slots. Each user that owns some STEEM can vote for
a validator. The 20 candidates that receive the most votes (weighted by the respective users’
STEEM) become validators. The 21st slot is filled with one of the candidates that was not
elected, chosen at random with probability proportional to her votes.

A validator is responsible for receiving new transactions and adding them to blocks.
Validators take turns in block production. An honest validator attaches her block to the
latest valid block she knows and broadcasts it to the network. We say that a round is
complete after each validator has had a chance to create a block. Honest nodes accept the
longest known chain as the valid one. Elections for validators happen once each round, thus
each STEEM holder is allowed to change her opinion very often.

The protocol promises that all new transactions are permanently added to the blockchain
in a short amount of time, given that at least two thirds of the validators are honest.
Unfortunately, we were unable to locate a formal proof of this claim.

Note that our analysis does not focus on DPOS, but on the curation mechanism of
Steemit. The latter is independent of the consensus protocol of Steem.

2 Related Work

User-generated content (UGC) has been identified as a fundamental component of social
media platforms and Web 2.0 in general [24]. The content created by users needs to be curated,
and crowdsourced content curation [3] has emerged as an alternative to expert-based [38]
or algorithmic-based [35] curation techniques. Motivated by the widespread adoption of
crowdsourced aggregation sites such as Reddit or Digg7, several research efforts [9, 14, 1] have
aimed to model the mechanics and incentives for users in UGC platforms. This surge of interest
is accompanied by studies which have shown how social media users behave strategically
when they publish and consume content [32]. As an example, in the case of Reddit, users try
to maximize their “karma” [4], the social badge of the social media platform [2].

7 http://digg.com/ Accessed: 2019-01-02
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Previous works have analyzed content curation from an incentives and game-theoretic
standpoint [14, 9, 21, 32, 1] . Our formalisation is based on these models and inherits features
such as the quality distribution of the articles and the users’ attention span [3, 14]. In
terms of the analysis of our results, the analysis of our t-convergence metric is similar to
the top-k posts in [3]. We also leverage the rank correlation coefficients Kendall’s Tau [25]
and Spearman’s Rho [37] to measure content curation efficiency. Our approach describes
the mechanics of post-voting systems from a computational perspective, something that
departs from the approach of all previous works, drawing inspiration from the real-ideal
world paradigm of cryptography [17, 30] as employed in our definition of t-convergence.

Post-voting systems constitute a special case of voting mechanisms, as studied within
social choice theory, belonging to the subcategory of cardinal voting systems [22]. In this
context, it follows from Gibbard’s theorem [15] that no decentralised non-trivial post-voting
mechanism can be strategy-proof. This is consistent with our results that demonstrate
how selfish behaviour is beneficial to the participants. Our system shares the property of
spanning multiple voting rounds with previous work [23]. Other related literature in social
choice [31, 6, 44] is centered on political elections and as a result attempts to resolve a
variation of the problem with quite different constraints and assumptions. In more detail, in
the case of political elections, voter communication in many rounds is costly while navigating
the ballot is not subject to any constraints as voters are assumed to have plenty of time to
parse all the options available to them. As a result, voters can express their preferences for
any candidate, irrespective of the order in which the latter appear on the ballot paper. On
the other hand, the online and interactive nature of post-voting systems make multi-round
voting a natural feature to be taken advantage of. At the same time, the fairness requirements
are more lax and it is acceptable (even desirable) for participants to act reactively on the
outcome of each others’ evaluations. On the other hand, in the post-voting case, the “ballot”
is only partially available given the high number of posts to be ranked that may very well
exceed the time available to a (human) user to participate in the process. As a result a
user will be unable to vote for posts that she has not viewed, for instance, because they are
placed at the bottom of the list. This is captured in our model by introducing the concept of
“attention span”.

Content curation is also related to the concept of online governance. The governance of
online communities such as Wikipedia has been thoroughly studied in previous academic
work [28, 13]. However, the financially incentivized governance processes in blockchain
systems, where the voters are at the same time equity-holders, have still many open research
questions [5, 12]. This shared ownership property has triggered interest in building social
media platforms backed by distributed ledgers, where users are rewarded for generated content
and variants of coin-holder voting are used to decide how these rewards are distributed.

As already mentioned, coin-weighted voting is a viable mechanism to measure the influence
of users in the platform and, by extension, to make the system more resistant to Sybil attacks.
Different countermeasures for the Sybil problem in content curation and recommendation
sites have been explored in the past [34, 40, 45, 33]. Orthogonal to the coin-weighted voting
model, these solutions leverage the trust graph of the underlying social network (which
is explicitly created by users) to bound the effect of Sybil votes [34, 40, 45]. [43] claim
that trust graph-based solutions require heavy computation, and propose optimizations for
real-world applications modeling the transitive trust relationships as credit networks. We
acknowledge these mechanisms as complementary to coin-weighted voting and potentially
implementable in Steemit. We note that the abstract post-voting system defined in this work
can be particularized to include such trust graph-based solutions.
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The effects of explicit financial incentives on the quality of content in Steemit has been
analyzed in [39]. Beyond the Steemit’s whitepaper [42], a series of blog posts [18, 19]
effectively extend the economic analysis of the system. In parallel with Steemit, other
projects such as Synereo [27] and Akasha8 are exploring the convergence of social media and
decentralized content curation. Beyond blockchain-based social media platforms, coin-holder
voting systems are present in decentralized platforms such as DAOs [7] and in different
blockchain protocols [11, 20]. However, most of these systems use coin-holder voting processes
to agree on a value or take a consensual decision.

3 Model

We first introduce some useful notation:
We denote an ordered list of elements with A = [e1, . . . , en] and the i-th element of the
list with A [i] = ei.
Let n ∈ N∗. [n] denotes {1, 2, . . . , n}.

3.1 Post list
I Definition 1 (Post). Let N ∈ N∗. A post is defined as P = (m, l), with m ∈ [N ] , l ∈ [0, 1]N .

Author. The first element of a post is the id of its creator m.
Likability. The likability of a post is defined as l ∈ [0, 1]N .

N represents the number of voters (a.k.a. players). A post has a distinct likability in [0, 1]
for each player.

I Definition 2 (Ideal Score of a post). Let post P = (m, l). We define the ideal score of P

as idealSc (P ) =
|l|∑
i=1

li.

The ideal score of a post is a single number that represents its overall worth to the community.
By using simple summation, we assume that the opinions of all players have the same weight.

I Definition 3 (Post List). Let M ∈ N∗. A post list P = [P1, . . . , PM ] is an ordered list
containing posts. It may be the case that two posts are identical.

In the case of many UGC platforms, e.g. Steemit, there exists a feed (commonly named
“Trending”) that displays the same ordered posts for all users. In such an ordered list, posts
placed closer to the top are more visible, since users typically consume content from top to
bottom. We can thus measure the quality of an ordered list of posts by comparing it with a
list that contains the same posts in decreasing order of ideal score.

I Definition 4 (t-Ideal Post Order). Let P a list of posts, t ∈ [M ]. The property Idealt (P)
holds if

∀i < j ∈ [t], idealSc (P [i]) ≥ idealSc (P [j]) .

We say that P has a t-ideal rank if Idealt (P) holds and t is the maximum integer less or
equal to M with this property.

8 https://akasha.world/ Accessed: 2019-01-02
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3.2 Post Voting System
We now define an abstract post-voting system. Such a system is defined through two
Interactive Turing Machines (ITMs), GFeed and Πhonest. The first controls the list of posts
and aggregates votes, whereas one copy of the second ITM is instantiated for each player.
GFeed sends the post list to one player at a time, receives her vote and reorders the post list
accordingly. The process is possibly repeated for many rounds.

A measure of the quality of a post-voting system is the t-ideal rank of the post list at the
end of the process.

In a more general setting, some of the honest protocol instantiations may be replaced with
an arbitrary ITM. A robust post-voting system should still produce a post list of high quality.

I Definition 5 (Post-Voting System). Consider four PPT algorithms Init, Aux, Handle-
Vote and Vote. The tuple S consisting of the four algorithms is a Post-Voting System. S
parametrizes the following two ITMs:
GFeed is a global functionality that accepts two messages: read, which responds with the

current list of posts and vote, which can take various arguments and does whatever is defined
in HandleVote.

Πhonest is a protocol that sends read and vote messages to GFeed whenever it receives
(activate) from E.

Algorithm 1 GFeed (Init, Aux, HandleVote) (P, initArgs).

1: Initialization:
2: U ← ∅ . Set of players
3: Init (initArgs)
4:
5: Upon receiving (read) from upid:
6: U ← U ∪ {upid}
7: aux← Aux (upid)
8: Send (posts, P, aux) to upid

9:
10: Upon receiving (vote, ballot) from upid:
11: HandleVote(ballot)

Algorithm 2 Πhonest (Vote).

1: Upon receiving (activate) from E :
2: Send (read) to GFeed
3: Wait for response (posts, P, aux)
4: ballot← Vote (P, aux)
5: Send (vote, ballot) to GFeed

Players are activated by an Environment ITM that sends activation messages (Algorithm 2,
line 1).

I Definition 6 (Post-Voting System Activation Message). We define actpid as the message
(activate,pid), sent to upid.
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I Definition 7 (Execution Pattern). Let N,R ∈ N∗, N ≥ 2.

ExecPatN,R =
{(

actpid1 , . . . , actpidNR

)
: ∀i ∈ [R] ,∀k ∈ [N ] ,∃j ∈ [N ] : pid(i−1)N+j = k

}
,

i.e. activation messages are grouped in R rounds and within each round each player is
activated exactly once. The order of activations is not fixed.

Let Environment E that sends messages msgs =
(
actpid1 , . . . , actpidn

)
sequentially. We

say that E respects ExecPatN,R if msgs ∈ ExecPatN,R. (Note: this implies that n = NR.)

I Definition 8 ((N,R,M, t)-convergence under honesty). We say that a post-voting system
S = (Init,Aux,HandleVote,Vote) (N,R,M, t)-converges under honesty (or t-converges
under honesty for N players, R rounds andM posts) if, for every input P such that |P| = M ,
for every E that respects ExecPatN,R and given that all protocols execute Πhonest, it holds that
after E completes its execution pattern, GFeed contains a post list P ′ such that Idealt (P ′)
is true.

Note that concrete post voting systems may or may not give information such as the total
number of rounds R to the players. This is decided in algorithm Aux.

We now give a high-level description of a concrete post voting system, based on the
Steemit platform. According to this mechanism, each player is assigned a number of coins
known as “Steem Power” (SP) that remains constant throughout the execution and another
number called “Voting Power” (VP) in [0, 1], initialized to 1. a and b are system-wide
constants that roughly specify how influential a single vote is. A vote is a pair containing
a post and a weight w ∈ [0, 1]. Upon receiving a list of posts, the honest player chooses to
vote her most liked post amongst the top attSpan posts of the list. The weight w is chosen
to be equal to the likability of the post. The functionality increases the score of the post
by SP (a ·VP · w + b) and subsequently decreases the player’s Voting Power by the same
amount (but keeping it within the aforementioned bounds). Voting Power is replenished
with time, at a rate defined by the parameter regen. The purpose of Voting Power is to “rate
limit” votes.

I Definition 9 (Steemit system). The Steemit system is the post voting system S with
parameters a, b, regen ∈ [0, 1] : a + b < 1,

⌈
a+b

regen

⌉
> 1, attSpan ∈ N∗,SP ∈ RN+ . The four

parametrizing procedures can be found in Appendix B.

I Remark 10. The constraint a+ b < 1 ensures that a single vote of full weight cast by a
player with full Voting Power does not completely deplete her Voting Power. The constraint⌈
a+b

regen

⌉
> 1 excludes the degenerate case in which the regeneration of a single round is

enough to fully replenish the Voting Power in all cases; in this case the purpose of Voting
Power would be defeated.

I Remark 11. The Steem blockchain protocol defines a = 0.02, b = 0.0001 and regen =
3

5·24·60·60 = 0.00000694̄, thus
⌈
a+b

regen

⌉
= 2895. A post can be voted for 7 days from its creation

and at most one vote can be cast every 3 seconds, thus R = 7·24·60·60
3 = 201600. We do not

know why these particular parameters were chosen, but we conjecture that a, b and regen
ensure users can vote often enough without abusing the system, 7 days is the time needed
for the quality of a post to be determined and 3 seconds is the time needed for transactions
to settle in the Steem blockchain.
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I Remark 12. Note (Algorithm 6, lines 24-40) that an honest player attempts to vote for as
many posts as possible and spreads her votes with the maximum distance between them.
The purpose of this is to efficiently utilize the available Voting Power to “make her voice
heard”. Also, efficiently using Voting Power on the Steemit website increases the voter’s
curation reward [18].

I Theorem 13.
1. If ∃i 6= j ∈ [N ] : SPi 6= SPj (i.e. if not all players have the same Steem Power) then

Steemit does not (N,R,M, 1)-converge.
2. If ∀i 6= j ∈ [N ] ,SPi = SPj (i.e. if all players have the same Steem Power) and

a. R− 1 ≥ (M − 1)
⌈
a+b

regen

⌉
then Steemit (N,R,M,M)-converges.

b. R− 1 < (M − 1)
⌈
a+b
regen

⌉
then Steemit does not (N,R,M, 1)-converge.

Proof Sketch. When SP is not constant, we build a post list where the most liked post is
not preferred by rich players and thus is not placed at the top. For a constant SP, when
R−1 ≥ (M − 1)

⌈
a+b

regen

⌉
, there are enough rounds to ensure full regeneration of every player’s

Voting Power between two votes and thus the resulting post list reflects the true preferences
of the players. In the opposite case, we can always craft a post list that exploits the fact
that some votes are cast with reduced Voting Power in order to trick the system into placing
a wrong post in the top position. J

See Appendix A for proof.

I Corollary 14. The Steemit system parametrised according to Remark 11, for any number
of players N ≥ 2, constant SP and M ≤ 70 posts (N,R,M,M)-converges. If M > 70 or SP
is not constant, then there exists a list of posts such that the system does not (N,R,M, 1)-
converge.

4 Simulation

The previous outcomes are here complemented with experiments that verify our findings. We
have implemented a simulation framework that realizes the execution of Steemit’s post-voting
system as defined above.

In particular, we consider two separate scenarios: First, we simulate the case when all
players follow the prescribed honest strategy of Steemit, investigating how the curation
quality of the system varies with the number of voting rounds. We successfully reproduce
the result of Theorem 13, which implies that the system converges perfectly when a sufficient
number of voting rounds is permitted, but otherwise the resulting list of posts may have a
0-ideal rank, i.e. the top post may not have the best ideal score. Moreover, we compare
our t-convergence metric with previously used metrics of convergence based on correlation
demonstrating that they are very closely aligned.

The second case measures how resilient is the curation quality of Steemit against dishonest
agents. Since a creator is financially rewarded when her content is upvoted, she has incentive
to promote her own posts. A combination of in-band methods (apart from striving to produce
posts of higher quality) can help her to that end. Voting for one’s own posts, refraining
from voting posts created by others and obtaining Sybil accounts that only vote for her
posts are only an indicative subset. We thus examine the quality of the resulting list when
certain users do not follow the honest protocol, but apply the aforementioned self-promoting
methods. We observe that even a single selfish player has a detrimental effect to the t-ideal
rank of the post voting system. Furthermore, we measure the number of positions on the list
that the selfish post gains with respect to the number of selfish players.
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4.1 Methodology

We leverage three metrics to compare the curated list with the ideal list: Kendall’s Tau [25],
Spearman’s Rho [37], and t-ideal rank.

In addition to the t-ideal rank and the rank correlation coefficients used in the first
scenario, in the case of dishonest participants we include a metric that measures the gains
of the selfish players. In particular, the metric is defined as the difference between the real
position of the “selfish” post after the execution and its ranking according to the ideal order.
We are thus able to measure how advantageous is for users to behave selfishly. Furthermore,
t-ideal rank informs us how this behavior affects the overall quality of curation of the platform.

4.2 Execution

In all simulations, the likabilities of all “honest” posts have been drawn from the [0, 1]-uniform
distribution and all players have Steem Power equal to 1; we leave the case of variable Steem
Power as future work.

(a) t-ideal rank evolution. (b) Kendall’s Tau and Spearman’s Rho evolution.

Figure 1 270 honest players, 70 posts and 200.000 rounds.

(a) t-ideal rank evolution. (b) Kendall’s Tau and Spearman’s Rho evolution.

Figure 2 300 honest players, 100 posts and 200.000 rounds.
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(a) Positions gained by selfish post. (b) t-ideal rank.

Figure 3 100 honest players, 100 posts and 0 to 100 selfish players.

4.2.1 Scenario A
As already mentioned, the results closely follow Theorem 13. Figures 1a and 1b show
the t-ideal rank and Kendall’s Tau coefficient respectively when the number of rounds is
enough for all votes to be cast with full Voting Power. In particular, the parameters used
are a = 1

50 , b = 10−4, regen = 3
5·24·60·60 , R = 200000, attSpan = 10, N = 270 and M = 70.

(Observe that R− 1 > (M − 1)
⌈
a+b

regen

⌉
.)

As we can see, all three measures show that the real list converges rapidly to the ideal
order at the very end of the execution; meanwhile, the quality of the list improves very slowly.

Figures 2a and 2b depict what happens when the rounds are not sufficient for all votes to be
cast with full Voting Power. In particular, the corresponding simulation was executed with the
same parameters, except forM = 100 and N = 300. (Observe that R−1 < (M − 1)

⌈
a+b

regen

⌉
.)

Here we see that at the end of the execution, only the first three posts are correctly
ordered. Regarding the rest of the list, both Kendall’s Tau and Spearman’s Rho coefficients
show that the order of the posts improves only slightly throughout the execution of the
simulation, ending up in a state of bad quality.

4.2.2 Scenario B: Selfish users
In order to understand how the presence of voting rings/Sybil accounts affects the curation
quality, we simulate the execution of the game for various ring sizes, where ring members
vote only for a particular “selfish” post. We fix the rest of the system parameters to
handicap the selfish post. In particular, the voting rounds are sufficient for all votes to
be cast with full Voting Power, the likability of the selfish post is 0 for all players and
it is initially placed at the bottom of the post list. Define the gain of the post of the
selfish players as its ideal position minus its final position. Figure 3a shows the gain of
the selfish post for a varying number of selfish players, from 1 to 100. Figure 3b depicts
the t-ideal rank of the resulting list at the same executions. The system parameters are
N = 101..200, a = 1

50 , b = 10−4, regen = 3
5·24·60 , attSpan = 10, R = 5000.

As we can see in Figure 3a, there is a cutoff point around which the selfish players quickly
move from gaining no positions to overtaking all honest posts. The number of selfish players
needed for this advantage is approximately half of the amount of honest ones. On the other
hand, figure 3b shows that even a single selfish player can almost completely ruin the t-ideal
rank of the result by only allowing a very small number of the best posts to be placed in the
correct order.
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5 Summary and Future Work

We have defined an abstract post-voting system, along with a particularization inspired by the
Steemit platform. We proved the exact conditions on the Steemit system parameters under
which it successfully curates arbitrary lists of posts. We provided the results of simulations
of the execution of the voting procedure under various conditions. Both cases with only
honest and mixed honest and selfish players were simulated. We conclude that the Voting
Power mechanism of Steem and the fact that self-voting is a profitable strategy may hurt
curation quality.

We have studied the curation properties of decentralized content curation platforms such
as Steemit, obtaining new insights on the resilience of these systems. Some assumptions
have been made in the presented model. Various relaxations of these assumptions constitute
fertile ground for future work. First of all, the selfish strategy can be extended and refined
in various ways. For example, voting rings can be allowed to create more than one posts in
order to increase their rewards. Optimizing the number of posts and the vote allocation in
this case would contribute towards a robust attack against the Steemit platform.

Selfish behavior is considered only in the simulation. Our analysis can be augmented
with a review of games with selfish players and voting rings.

The addition of the economic factor invites the definition of utility functions and strategic
behavior for the players. Its inclusion would imply the need for an expansion of our theorems
and definitions to the strategic case, along with a full game-theoretic analysis. Furthermore,
several possible refinements could be introduced; for example, the process of creating Sybil
accounts could be associated with a monetary cost.

Last but not least, in our model, posts are created only at the beginning of the execution.
A dynamic model in which posts can be created at any time and the execution continues
indefinitely (as is the case in a real-world UGC system) is also interesting as a future direction.
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A Proof of Theorem 13: Steem Convergence

Proof.
Statement 1: Reorder the players such that SP1 ≥ SP2 ≥ · · · ≥ SPN . Let k =

min
j∈[N−1]

{SPj 6= SPj+1}. We first cover the case when attSpan ≥ 2.

Let9

weakPost = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−k

)

9 We thank Heng Guo from the University of Edinburgh for this counterexample.
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strongPost = (0, . . . , 0︸ ︷︷ ︸
k−1

,
SPk − SPk+1

2SPk
, 1, 0, . . . , 0︸ ︷︷ ︸

N−k−1

)

nullPost = (0, . . . , 0︸ ︷︷ ︸
N

)P = [weakPost, strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

] .

We first note that SPk > SPk+1 ≥ 0 ⇒ 0 ≤ SPk−SPk+1
2SPk

≤ 1, thus strongPost is a valid
post. We then observe that

∀i ∈ {3, . . . ,M} , idealSc (P [i]) = 0 <

< idealSc (P [1]) = 1 < 1 + SPk − SPk+1

2SPk
= idealSc (P [2]) ,

thus ∀P ′ that contain the same posts as P and Ideal1 (P ′) holds, it is P ′ [1] = P [2].
Since attSpan ≥ 2, all players apart from uk+1 vote for P [1] in the first round and for
P [2] in the second, whereas uk+1 votes for P [2] in the first round and for P [1] in the
second. Thus the two first posts will have been voted by all players by the end of the
second round and their score will not change until the execution completes. We have:

sc2 (P [1]) = scR (P [1]) =
k−1∑
j=1

SPjb+ SPk (a+ b) + SPk+1 min
{
b,VPregk+1,r2

}
+

M∑
j=k+2

SPjb and

sc2 (P [2]) = scR (P [2]) =
k−1∑
j=1

SPj min {b,VPregj,r2}+

SPk min {aSPk − SPk+1

2SPk
VPregk,r2 + b,VPregk,r2}+ SPk+1 (a+ b) +

M∑
j=k+2

SPj min {b,VPregj,r2} ⇒

scR(P [2]) ≤
k−1∑
j=1

SPjb+ SPk(aSPk − SPk+1

2SPk
+ b) + SPk+1 (a+ b) +

M∑
j=k+2

SPjb .

In the case that VPregk+1,r2 ≥ b, it is

scR (P [1]) =
k−1∑
j=1

SPjb+ SPk (a+ b) + SPk+1b+
M∑

j=k+2
SPjb >

k−1∑
j=1

SPjb+ SPk(aSPk − SPk+1

2SPk
+ b) + SPk+1 (a+ b) +

M∑
j=k+2

SPjb ≥

scR (P [2])⇒ scR (P [1]) > scR (P [2]) ,

thus Ideal1 (P ′) does not hold.
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Since uk+1 does not vote in any round between r1 and r2, and r2 ≥ 2, it is VPregk+1,r2 ≥
1 − a − b + regen. Thus the case when VPregk+1,r2 < b can happen only when b >

1− a− b+ regen⇔ b > 1−a+regen
2 . We now provide a counterexample for the case when

b > 1−a+regen
2 .

Once more we order the players in descending Steem Power, like in the previous case.
Once again k = min

j∈[N−1]
{SPj 6= SPj+1} and we only care for the case when attSpan ≥ 2.

Let 0 < γ < 1 and

weakPost = (0, . . . , 0︸ ︷︷ ︸
k−1

, 1, γ2 , 0, . . . , 0︸ ︷︷ ︸
N−k−1

)

strongPost = (0, . . . , 0︸ ︷︷ ︸
k−1

, γ, 1, 0, . . . , 0︸ ︷︷ ︸
N−k−1

)

nullPost = (0, . . . , 0︸ ︷︷ ︸
N

)

P = [weakPost, strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−2

] .

We observe that ∀i ∈ {3, . . . ,M} , idealSc (P [i]) = 0 < idealSc (P [1]) = 1 + γ
2 < 1 + γ =

idealSc (P [2]), thus ∀P ′ that contain the same posts as P and Ideal1 (P ′) holds, it is
P ′ [1] = P [2].
Since attSpan ≥ 2, all players apart from uk+1 vote for P [1] in the first round and for
P [2] in the second, whereas uk+1 votes for P [2] in the first round and for P [1] in the
second. Thus the two first posts will have been voted by all players by the end of the
second round and their score will not change until the execution completes. We have:

sc2 (P [1]) = scR (P [1]) =
k−1∑
j=1

SPjb+ SPk (a+ b) + SPk+1VPregk+1,r2 +
M∑

j=k+2
SPjb and

sc2 (P [2]) = scR (P [2]) =
k−1∑
j=1

SPj min {b,VPregj,r2}+ SPkVPregk,r2 + SPk+1 (a+ b) +

M∑
j=k+2

SPj min {b,VPregj,r2} ≤

k−1∑
j=1

SPjb+ SPkVPregk,r2 + SPk+1 (a+ b) +
M∑

j=k+2
SPjb .

We note that VPregk,r2 = VPregk+1,r2 because both uk and uk+1 vote with full Voting
Power in the first round. Let VP = VPregk,r2 . We have

SPk (a+ b) + SPk+1VP > SPkVP + SPk+1 (a+ b)⇔
SPk (a+ b) + SPk+1VP− SPkVP− SPk+1 (a+ b) > 0⇔
(a+ b) (SPk − SPk+1)−VP (SPk − SPk+1) > 0⇔
(SPk − SPk+1) (a+ b−VP) > 0

The last expression is true because SPk > SPk+1 and VP < b, thus the first expression is
true as well. We can then deduce that scR (P [1]) > scR (P [2]), thus Ideal1 (P ′) does
not hold. Please refer to the full version [26] for the case when attSpan = 1.
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Statement 2a: Suppose that

R− 1 ≥ (M − 1)
⌈
a+ b

regen

⌉
. (1)

Observe that

(1)⇒ R− 1
M − 1 ≥

⌈
a+ b

regen

⌉
rhs⇒

integer

⌊
R− 1
M − 1

⌋
≥
⌈
a+ b

regen

⌉
. (2)

Let pid ∈ [N ]. From (1) we deduce that R ≥M and according to VoteThisRound in
Algorithm 6, upid votes non-null in rounds (r1, . . . , rM ) with ri =

⌊
(i− 1) R−1

M−1

⌋
+ 1. We

define the following:

k ∈ N, w ∈ R ,

n ∈ Z, p ∈ [0, 1) : (k − 1)w = n+ p ,

m ∈ Z, q ∈ [0, 1) : w = m+ q .

We have

b(k − 1)wc = n , (3)

bkwc =
{
n+m, p+ q < 1
n+m+ 1, p+ q ≥ 1 (impossible if p = 0)

(4)

bwc = m (5)

dwe =
{
m, p = 0
m+ 1, p > 0

(6)

(3), (4), (5), (6), p+ q < 2⇒
bkwc ∈ {b(k − 1)wc+ bwc, b(k − 1)wc+ dwe}

(7)

From (7) we deduce that

∀i ∈ [M ] \ {1} , ri ∈ {ri−1 +
⌊
R− 1
M − 1

⌋
, ri−1 +

⌈
R− 1
M − 1

⌉
} . (8)

From (2) and (8) we have that ∀i ∈ [M − 1] , ri+1 − ri ≥
⌈
a+b

regen

⌉
. We will now prove by

induction that ∀i ∈ [M ] ,VPpid,ri = 1.

For i = 1,VPpid,1 = 1 (Algorithm 3, line 4).
Let VPpid,ri

= 1. Until ri+1, a single non-null vote is cast by upid, which reduces
VPpid by at most a+ b (Algorithm 5, line 7) and at least

⌈
a+b

regen

⌉
regenerations, each

of which replenishes VPpid by regen. Thus

VPpid,ri+1 ≥ min {VPpid,ri
− a− b+ regen

⌈
a+ b

regen

⌉
, 1} ≥ 1 .

But VPpid cannot exceed 1 (line 4), thus VPpid,ri+1 = 1.



A. Kiayias, B. Livshits, A. Monteoliva Mosteiro, and O. S. T. Litos 3:17

Since the above holds for every pid ∈ [N ], it holds that at the end of the execution, all votes

have been cast with full Voting Power, thus ∀i ∈ [M ] , scR (P [i]) = Nb+ a
N∑

pid=1
P [i]pid

and the posts in PR are sorted by decreasing score (Algorithm 5, line 20). We observe
that

∀i 6= j ∈ [M ] , idealSc (P [i]) > idealSc (P [j])⇒
N∑

pid=1
P [i]pid >

N∑
pid=1

P [j]pid ⇒

Nb+ a

N∑
pid=1

P [i]pid > Nb+ a

N∑
pid=1

P [j]pid .

Therefore all posts will be ordered according to their ideal scores; put otherwise,
IdealScoreM (PR) holds.

Statement 2b: Suppose that

R− 1 < (M − 1)
⌈
a+ b

regen

⌉
. (9)

Several lists of posts will be defined in the rest of the proof. Given that, when all players
are honest, the creator of a post is irrelevant, we omit the creator from the definition of
posts to facilitate the exposition. Thus every post will be defined as a tuple of likabilities.
First, we consider the case when

attSpan +R ≤M . (10)

In this case, no player can ever vote for the last post, as we will show now. First of all,
(10)⇒ R < M , thus all players cast R votes in total. Let pid ∈ N, i ∈ [R] and vpid,i the
index of the last post that has ever been in upid’s attention span until the end of round i,
according to the ordering of P . It is vpid,1 = attSpan and ∀i ∈ [R]\{1} , vpid,i = vpid,i−1+1,
since in every round upid votes for a single post and the first unvoted post of the list
is added to their attention span. Note that, since this mechanism is the same for all
players, the same unvoted post is added to all players’ attention span at every round.

Thus ∀pid ∈ N, vpid,R = attSpan +R− 1
(10)
< M . We deduce that no player has ever the

chance to vote for the last post. The above observation naturally leads us to the following
counterexample: Let

strongPost = (1, . . . , 1︸ ︷︷ ︸
N

),nullPost = (0, . . . , 0︸ ︷︷ ︸
N

)

P = [nullPost, . . . ,nullPost︸ ︷︷ ︸
M−1

, strongPost]

∀i ∈ [M − 1] , it is idealSc (P [M ]) > idealSc (P [i]), thus ∀P ′ that contain the same
posts as P and Ideal1 (P ′) holds, it is P ′ [1] = P [M ]. However, since the last post
is not voted by any player and the first post is voted by at least one player, it is
scR (P [1]) > scR (P [M ]), thus Ideal1 (PR) does not hold.
We now move on to the case when attSpan +R > M . Let V = min {R,M}. Each player
casts exactly V votes. Consider P1 = 1M×N and pid ∈ [N ]. Let

i ∈ [V ] :
(

VPregpid,ri
< 1 ∧ @i′ < i : VPregpid,ri′ < 1

)
,
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i.e. i is the first round in which upid votes with less than full Voting Power. Such a round
exists in every case as we will show now. Note that, since the first round is a voting
round and the Voting Power of all players is full at the beginning, if i exists it is i ≥ 2.

If R ≥M , it is V = M .
If @i ∈ [M ] :

(
VPregpid,ri

< 1 ∧ @i′ < i : VPregpid,ri′ < 1
)
, then we have that ∀i ∈

[M ] ,VPregpid,ri
= 1 ⇒ ∀i ∈ [M ] \ {1} , ri ≥ ri−1 +

⌈
a+b

regen

⌉
to have enough rounds

to replenish the Voting Power after a full-weight, full-Voting Power vote. Thus
rM ≥ 1 + (M − 1)

⌈
a+b

regen

⌉
> R, contradiction.

If R < M , every player votes on all rounds, thus r2 = 2. Note that⌈
a+ b

regen

⌉
≥ 2⇒ a+ b

regen > 1⇒ a+ b > regen . (11)

Thus ∀pid ∈ [N ] ,VPregpid,r2 = 1− a− b+ regen
(11)
< 1, thus i = 2.

We proved that i exists. Since all players follow the same voting pattern, the Voting
Power of all players in each round is the same. Let rVP = VPreg1,ri

. Assume that
attSpan < i ∨ i > 2. Please refer to the full version [26] for the case when attSpan ≥
i ∧ i = 2. In case N is even, let 0 < γ < 0, 0 < ε < γ (1− rVP),

weakPost = (1, . . . , 1︸ ︷︷ ︸
N/2

, γ − ε, . . . , γ − ε︸ ︷︷ ︸
N/2

) ,

strongPost = (γ, . . . , γ︸ ︷︷ ︸
N/2

, 1, . . . , 1︸ ︷︷ ︸
N/2

),nullPost = (0, . . . , 0︸ ︷︷ ︸
N

) ,

P = [weakPost, . . . ,weakPost︸ ︷︷ ︸
i−1

, strongPost,nullPost, . . . ,nullPost︸ ︷︷ ︸
M−i

] .

First of all, it is

∀j ∈ [i− 1] , idealSc (P [j]) = N

2 (1 + γ − ε) <

<
N

2 (1 + γ) = idealSc (P [i])

and ∀j ∈ {i+ 1, . . . ,M} , idealSc (P [j]) = 0 < idealSc (P [i]), thus the strong post has
strictly the highest ideal score of all posts and as a result, ∀P ′ that contains the same
posts as P and Ideal1 (P ′) holds, it is P ′ [1] = P [i].
We observe that all players like both weak and strong posts more than null posts, thus
no player will vote for a null post unless her attention span contains only null posts. This
can happen in two cases: First, if the player has not yet voted for all non-null posts, but
the first attSpan posts of the list, excluding already voted posts, are null posts. Second,
if the player has already voted for all non-null posts. For a null post to rank higher than
a non-null one, it must be true that there exists one player that has cast the first vote for
the null post. However, since the null posts are initially at the bottom of the list and it is
impossible for a post to improve its ranking before it is voted, we deduce that this first
vote can be cast only after the voter has voted for all non-null posts. We deduce that all
players vote for all non-null posts before voting for any null post.
We will now see that the first N

2 players vote first for all weak posts and then for the
strong post. These players like the weak posts more than the strong post. As we saw,
they will not vote any null post before voting for all non-null ones. If attSpan > 1 they
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vote for the strong post only when all other posts in their attention span are null ones
and thus they will have voted for all weak posts already. If attSpan = 1 and since no
post can increase its position before being voted, the strong post will become “visible”
for all players only once they have voted for all weak posts. Thus in both cases the first
N
2 players vote for the strong post only after they have voted for all weak posts first.

The two previous results combined prove that the first N
2 players vote for the strong post

in round ri exactly. We also observe that these players have experienced the exact same
Voting Power reduction and regeneration as in the case of P1 since they voted only for
posts with likability 1, thus in round ri their Voting Power after regeneration is exactly
the same as in the case of P1 : ∀pid ∈

[
N
2
]
,VPregpid,ri

= rVP.

We observe that the first N
2 players vote for all weak posts with full Voting Power. As for

the last N
2 players, we observe that, if attSpan < i, they all vote for the first weak post

of the list in the first round, and thus with full Voting Power. If attSpan ≥ i and i > 2,
they vote for the strong post in the first round and for the first weak post in r2 with full
Voting Power. Thus in all cases the last N

2 players vote for the first weak post with full
Voting Power. Therefore, the score of the first weak post at the end of the execution is
scR (P [1]) = N

2 (a+ b) + N
2 ((γ − ε) a+ b).

On the other hand, at the end of the execution the strong post has been voted by the first
N
2 players with rVP Voting Power and by the last N

2 players with at most full Voting
Power, thus its final score will be at most scR (P [i]) ≤ N

2 (rVP · γa+ b) + N
2 (a+ b). It is

ε < γ (1− rVP)⇒
N

2 (rVP · γa+ b) + N

2 (a+ b) < N

2 (a+ b) + N

2 ((γ − ε) a+ b)⇒

scR (P [i]) < scR (P [1]) .

Thus PR [1] 6= P [i] and Ideal1 (PR) does not hold.

As for the case when N is odd, let 0 < ε < γN−3
N−1 (1− rVP). In this case, we assume

that the likability of the first i posts (weak and strong) for the additional player is γ,
whereas the likability of the last M − i posts (the null posts) is 0. This means that the
additional player votes first for the weak and strong posts and then for the null posts.
The rest of the likabilities remain as in the case when N is even. We observe that the
ideal score of the strong post is still strictly higher than the rest. Furthermore, since the
additional player votes for the first weak post within the first i voting rounds, her Voting
Power at the time of this vote will be at least rVP. We thus have the following bounds
for the scores:

scR (P [i]) ≤ N − 1
2 (rVP · γa+ b) + N − 1

2 (a+ b) + γa+ b ,

scR (P [1]) ≥ N − 1
2 (a+ b) + N − 1

2 ((γ − ε) a+ b) + rVP · γa+ b .

Given the bounds of ε, it is scR (P [i]) < scR (P [1]), thus Ideal1 (PR) does not hold. J
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B Steem Post Voting System Procedures

Algorithm 3 Init (attSpan, a, b, regen, R, SP).

1: Store input parameters as constants
2: r ← 1
3: lastVoted← (0, . . . , 0) ∈ (N∗)N

4: VP← (1, . . . , 1) ∈ [0, 1]N

5: scores← (0, . . . , 0) ∈ (R+)M

Algorithm 4 Aux.

1: return (attSpan, a, b, r, regen, R,SP)

Algorithm 5 HandleVote (ballot, upid).

1: if lastVotedpid 6= r then . One vote per player per round
2: VPpid,r ← VPpid . For proofs
3: VPpid ← max {VPpid + regen, 1}
4: VPregpid,r ← VPpid . For proofs
5: if ballot 6= null then
6: Parse ballot as (P,weight)
7: cost← a ·VPpid · weight + b

8: if VPpid − cost ≥ 0 then
9: score← cost · SPpid

10: VPpid ← VPpid − cost
11: else
12: score← VPpid · SPpid
13: VPpid ← 0
14: end if
15: scoresP ← scoresP + score
16: end if
17: lastVotedpid ← r

18: end if
19: if ∀i ∈ [N ] , lastVotedi = r then . round over
20: P ← Order (P, scores) . order posts by votes
21: Pr ← P . For proofs
22: r ← r + 1
23: end if
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Algorithm 6 Vote (P, aux).

1: Store aux contents as constants
2: voteRounds← VoteRounds (R, |P|)
3: if VoteThisRound (r, |P|) = yes then
4: top← ChooseTopPosts (attSpan,P, votedPosts)
5: (i, l)← argmax

(i,l)∈top
{lpid}[1]

6: votedPosts← votedPosts ∪ (i, l)
7: return ((i, l) , lpid)
8: else
9: return null
10: end if
11:
12: function ChooseTopPosts(attSpan,P, votedPosts)
13: res← ∅
14: idx← 1
15: while |res| < attSpan & idx ≤ |P| do
16: if P [idx] /∈ votedPosts then . One vote per post per player
17: res← res ∪ {P [idx]}
18: end if
19: idx← idx + 1
20: end while
21: return res
22: end function
23:
24: function VoteThisRound(r,M)
25: if R < M then
26: return yes
27: else if r ∈ voteRounds then
28: return yes
29: else
30: return no
31: end if
32: end function
33:
34: function VoteRounds(R,M)
35: voteRounds← ∅
36: for i = 1 to M do
37: voteRounds← voteRounds ∪

{
1 +

⌊
(i− 1) R−1

M−1

⌋}
38: end for
39: return voteRounds
40: end function

Tokenomics 2019





An Empirical Study of Speculative Concurrency in
Ethereum Smart Contracts
Vikram Saraph
Department of Computer Science, Brown University, USA
vsaraph@cs.brown.edu

Maurice Herlihy
Department of Computer Science, Brown University, USA
mph@cs.brown.edu

Abstract
We use historical data to estimate the potential benefit of speculative techniques for executing

Ethereum smart contracts in parallel. We replay transaction traces of sampled blocks from the
Ethereum blockchain over time, using a simple speculative execution engine. In this engine, miners
attempt to execute all transactions in a block in parallel, rolling back those that cause data conflicts.
Aborted transactions are then executed sequentially. Validators execute the same schedule as miners.

We find that our speculative technique yields estimated speed-ups starting at about 8-fold in
2016, declining to about 2-fold at the end of 2017, where speed-up is measured using either gas costs
or instruction counts. We also observe that a small set of contracts are responsible for many data
conflicts resulting from speculative concurrent execution.
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1 Introduction

A blockchain is a distributed data structure that implements a ledger : a tamper-proof,
widely-accessible, append-only sequence of transactions. Blockchains form the basis for
cryptocurrencies [8, 10, 11, 12, 13] and other applications that must maintain a shared state
in the absence of a trusted central authority. In the Ethereum [8] blockchain, for example, if
Alice wants to send a coin to Bob, she broadcasts her transaction to one or more miners,
who package transactions into blocks, and then undertake a consensus protocol to agree on
which block should be appended next to the shared blockchain. A validator is any party
who reads the blockchain state and checks it for correctness. Miners are validators, of course,
but so is any party who needs to query the blockchain state.

In many blockchain systems, client transactions can invoke scripts, often called smart
contracts, or just contracts, that perform logic needed to support complex services such as
trading, voting, and managing tokens. Here, we focus on Ethereum-style smart contracts.

Ethereum’s smart contracts present a concurrency challenge. To reconstruct the block-
chain’s current state, each validator must re-execute, in a sequential, one-at-a-time order,
every call to every smart contract. Such sequential validation is unattractive because it fails
to exploit the concurrency provided by modern multicore architectures. Simply executing
those calls in parallel is unsafe, because there may be dependencies between contracts: if one
contract depends on the results of another, then those contracts must be executed in the same
order by every validator. Because the Ethereum smart contract language is Turing-complete,
and because contracts can reference one another through untyped function pointers, static
analysis is unlikely to be broadly effective.
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The most promising approach to concurrent execution of smart contracts is speculation
[1, 4, 7]: the virtual machine executes contract calls in parallel against the current state,
tracking each transaction’s read set and write set (memory locations read and written).
Writes to memory are intercepted and buffered. Two transactions conflict if they access the
same memory location, and one access is a write. For every pair of conflicting transactions,
one is discarded, and the other is committed. Speculative techniques typically work well
when conflicts are rare, but perform poorly when conflicts are common.

1.1 Contributions

How well does speculative concurrency work for smart contract execution? This paper makes
the following contributions. We exploit publicly-available historical data to estimate conflict
rates in an existing blockchain. This methodology, replaying the historical transaction record
against proposed alternative run-times, could be a useful model for other blockchain-centered
investigations. This study is exploratory: it aspires to provide a relatively fast and cheap
estimate of how well certain strategies are likely to do in practice, with the goal of focusing
future research attention in directions more likely to be productive. Of course, an exploratory
study necessarily employs sampling, estimation, and approximation.

As described below in more detail, we re-execute blocks sampled from the Ethereum
blockchain against a simple speculative execution engine. This engine has two phases: in
the first (concurrent) phase, all transactions are run in parallel. In the second (sequential)
phase, transactions observed to conflict are discarded and re-run in one-at-a-time order. This
execution strategy produced speed-ups ranging from about 8-fold for blocks sampled from
2016, gradually declining to about 2-fold for blocks sampled from 2017.

This study makes the following observations.
Even simple speculative strategies yield non-trivial speed-ups.
Over time, however, these speed-ups declined as transaction traffic increased.
Distinguishing between reads and writes is important: treating a transaction’s read and
write sets as a single conflict set substantially increases conflict rates.
More aggressive speculative strategies, such as running multiple concurrent phases, yield
little additional benefit.
Accurate static conflict analysis may yield a modest benefit.
Increasing the number of cores in the simulated virtual machine from 16 to 64 improved
speed-ups, but there was little improvement above 64 cores.
In high-contention periods, most contention resulted from a very small number of popular
contracts.

These observations suggest some directions for further research.
In periods of high contention, most conflict is caused by a small number of very popular
contracts. Today, contract writers have no motivation for avoiding such conflicts. It
could be productive to devise incentives, perhaps in the form of reduced gas prices, for
contracts that produce fewer data conflicts.
Many data conflicts, such as crediting and debiting account balances, are probably
artifacts of defining conflict naïvely in terms of read-write sets. Perhaps conflicts could
be reduced by extending the virtual machine to provide explicit support for common
commutative operations such as credits and debits.
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1.2 Methodology in Brief
We replay each transaction in a block, computing each transaction’s read and write sets. We
then greedily sort the transactions into two bins: the concurrent bin holds transactions that
do not conflict with any other transaction already in the concurrent bin, and the sequential
bin holds the rest.

We then estimate the elapsed time required to (1) execute the concurrent bin transactions
in parallel (including the cost of detecting and discarding conflicting transactions), followed
by (2) sequentially executing the sequential bin transactions.

Since we do not have a parallel EVM implementation to test, we estimate a transaction’s
running time in two ways: either by the gas it consumed, or by the number of Ethereum
Virtual Machine (EVM) bytecode instructions executed. (Both measures are easy to compute,
and yield similar results.) The speed-up is the ratio between the estimated elapsed times for
the sequential executions versus the longest speculative execution.

In the next section we describe related work. In Section 3, we outline Ethereum’s
architecture, smart contracts, and all relevant terminology. Section 4 describes the setup
of our empirical study along with statistics summarizing observed results, while in Section
5, we consider various alternatives to the baseline setup. Finally, in Sections 6 and 7, we
discuss conclusions and potential future directions for extending this work.

2 Related Work

Smart contracts were first proposed by Szabo [15].
Bitcoin [12] includes a scripting language of limited power. Ethereum [8] is perhaps

the most widely used smart contract platform, running on a quasi-Turing-complete virtual
machine. Solidity [14] is the most popular programming language for the Ethereum virtual
machine. Other blockchains that support smart contracts include Corda [5] and Cardano [9].

Hyperledger Fabric [4] is a permissioned blockchain where transactions (calls to smart con-
tracts) are executed speculatively in parallel against the latest committed state. Transactions’
read and write sets are recorded and compared, and conflicting contracts are discarded.

Dickerson et al. [7] have proposed a speculative execution model where miners dynamically
construct a fork-join schedule that allows concurrent executions without violating transaction
dependencies. Anjana et al. [1] propose a way to extend this approach to lock-free executions.

3 Ethereum Smart Contracts

In this section, we provide some background on Ethereum smart contracts, mining, and
validation of Ethereum blocks.

3.1 The Architecture
In Ethereum, as in other blockchains, multiple nodes follow a common protocol in which
transactions from clients are packaged into blocks, and nodes use a consensus protocol to
agree on successive blocks. Each block includes a cryptographic hash of its predecessor,
making it difficult to tamper with the ledger.

Each client has ownership of one or more accounts, so that each transaction occurs
between a sender account and a recipient account. The majority of transactions are one of
two kinds: either a value transfer, which is a purely monetary transfer of ether from sender
to recipient, or a contract call, where the sender account makes a call to code associated with
the recipient account.
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1 contract StorageInterface {
2 mapping (uint => uint) storage;
3

4 function getValue(uint key) returns (uint) {
5 return storage [key ];
6 }
7

8 function setValue(uint key, uint value) {
9 storage [key] = value;

10 }
11 }

(a) This code is a simple smart contract written in the Solidity
language. The contract, StorageInterface , contains a Solid-
ity mapping named storage, and has functions getValue and
setValue. Mappings are essentially hash tables that store key-
value pairs, and are the primary means of accessing Ethereum
contract storage. Figure 1b shows a snippet of the bytecode
after compiling the Solidity contract. The bytecode is what is
published in the blockchain.

247 ...
248 JUMPDEST
249 DUP1
250 PUSH1 0x0
251 DUP1
252 DUP5
253 DUP2
254 MSTORE
255 PUSH1 0x20
256 ADD
257 SWAP1
258 DUP2
259 MSTORE
260 PUSH1 0x20
261 ADD
262 PUSH1 0x0
263 KECCAK256
264 DUP2
265 SWAP1
266 SSTORE
267 POP
268 ...

(b) Bytecode resulting from
compiling the contract.

Figure 1 An example Solidity smart contract and a fragment of the corresponding bytecode.

Some Ethereum accounts, in addition to maintaining a balance of ether, possess associated
code called a smart contract. A smart contract resembles an object in a programming language,
with a long-lived state recorded in the blockchain. This state is manipulated by a set of
functions called either directly by clients (top-level calls) or indirectly by other smart contracts
(internal calls). To ensure that function calls terminate, each computational step incurs a
cost in gas, paid by the caller. The caller specifies a maximum amount of gas it is willing to
pay, and if the charge exceeds that sum, the computation is terminated and rolled back, and
the caller’s gas is not refunded. Nevertheless, the rolled-back transaction is still recorded on
the blockchain.

A smart contract’s code consists of a sequence of bytecode instructions, taken from the
Ethereum bytecode instruction set. Every bytecode instruction consumes a certain amount
of gas. Each client runs an instance of the Ethereum virtual machine (EVM), which executes
calls to smart contracts and runs their sequence of instructions. While users may author
smart contracts in higher level languages such as Solidity, these contracts must ultimately be
compiled into EVM bytecode, since it is the bytecode that is published in the blockchain.
The virtual machine specification, the bytecode instruction set, and all associated gas costs
are described in Ethereum’s “Yellow Paper” [16].
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3.2 Mining and Validation
Smart contracts are first executed by miners, or nodes that repeatedly propose new blocks
to append to the blockchain. When a miner creates a block, it selects a sequence of client
transactions and executes their smart contract codes in sequence, transforming the old
contract state into a new state.

Once a block has been appended to the blockchain, that block’s smart contracts are
re-executed by validators, or nodes that reconstruct (and check) the current blockchain state.
Each miner validates blocks proposed by other miners, and older blocks are validated by
newly-joined miners, or by clients querying the contract state. Once a contract is in a block,
it is effectively re-executed forever (in Ethereum), so contract executions by validators vastly
exceed executions by miners.

As noted earlier, one drawback of the Ethereum protocol is that a block’s contracts are
executed in a one-at-a-time order, so miners and validators cannot exploit modern multicore
architectures. Contracts cannot be executed concurrently in a naïve way, because they share
storage, and may be subject to data conflicts, that is, concurrent accesses to the same the
storage variables.

In the absence of explicit concurrency guidelines, we execute transactions speculatively in
parallel, allowing non-conflicting contracts to commit, but rolling back conflicting transactions,
and running them sequentially in a second phase.

A novel aspect of this study is that we analyze the effectiveness of speculation against the
historical record of transactions actually executed on the Ethereum blockchain, replaying their
bytecode instructions. We are not aware of an Ethereum virtual machine implementation
that supports concurrency, so we simulate concurrent transaction execution by stepping
through each transaction’s instructions, using eager conflict detection to sort each block’s
transactions into a conflict-free parallel bin, and a conflicted sequential bin. This strategy is
simple and scalable, a natural starting point for an empirical study.

4 The Baseline Experiment

Here we describe the baseline experiment testing the effectiveness of a simple speculative
execution strategy against historical transaction data from the Ethereum blockchain. In
Section 5, we describe variations on this baseline strategy that probe the sensitivity of our
measurements, as well as alternative speculative strategies.

4.1 Setting up the Experiment
We set up an Ethereum node by installing and running the Ethereum Go client, also known as
geth . The geth client allows one to synchronize with other network nodes and reconstruct
the blockchain by validating each block. The client comes packaged with an interface for
fetching data from the blockchain, as well as debugging tools for inspecting transactions. The
debugging API includes a utility for reproducing the bytecode trace of a given transaction.

The geth client can run in various synchronization modes, which determine what and
how much old state the client records. For example, a client running in light mode will keep
track of the blockchain’s current state only, while in archive mode, the client maintains the
full log of all previous states.

Using the geth API, it is straightforward to retrieve any given smart contract’s bytecode.
However, the only way to tell how that bytecode affects the blockchain state is by re-
executing each transaction before it. Therefore we use geth’s tracing utility to re-execute
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Figure 2 Historical periods analyzed superimposed on number of transactions per day.

Period Interval Blocks Transactions Calls
1 Sept 1 – 8, 2016 4200 32502 11779
2 Nov 17 – 24, 2016 4200 32648 11070
3 Feb 2 – 9, 2017 3600 26415 10586
4 Apr 20 – 27, 2017 4100 56051 23684
5 July 6 – 13, 2017 3400 197003 84219
6 Sept 21 – 28, 2017 2100 200980 96043
7 Dec 7 – 14, 2017 4100 557471 255872

Figure 3 Number of blocks, transactions, and contract calls analyzed in each historical period.

transactions, running the client in archive mode so it can reference past states. We found
that reconstructing the blockchain from scratch in this way was much too slow to be feasible
on an ordinary computer (an archive blockchain sync could not even keep up with the current
blockchain growth rate), so we obtained a baseline copy of the blockchain from the ConSenSys
archive [3] dating from Ethereum’s origins in 2016 to early October 2017. Starting from this
base, we used the geth utilities to synchronize up to December 2017.

Between these dates, the Ethereum blockchain contains about 4 million blocks and
100 million transactions, far too much data to analyze in detail in a reasonable time with
reasonable resources. Instead, we chose to focus on seven historical periods between July
2016 (after the DAO fork) and December 2017. Each period spans roughly one week, with
consecutive periods separated by 11 weeks, so that each day of the month is considered. Due
to computational limitations, we analyze every 10th block in each of the seven historical
periods. Figure 2 shows these periods superimposed on the number of transactions per day
at that time.

4.2 The Greedy Concurrent EVM
We simulated a concurrent EVM that executes transactions speculatively in parallel using
the following greedy strategy. For each block, execution proceeds in two phases, an initial
concurrent phase, and a subsequent sequential phase. We consider execution engines with
either 16, 32, or 64 threads. In the concurrent phase, each thread chooses a transaction
from the block and executes it speculatively. If that transaction encounters a conflict, the
transaction’s effects are rolled back, and that transaction is deferred to the second, sequential
phase. When a thread finishes executing a transaction, it picks another to execute, continuing
until all transactions in the current block have been chosen.
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The second phase starts when the first phase is complete: the transactions that encountered
data conflicts in the first phase are re-executed sequentially. In the second phase, data conflicts
are not an issue since transactions are explicitly serialized and state changes committed
sequentially.

Two transactions conflict if they access the same storage location, and at least one access
is a write. Transactions that do not conflict are said to commute, because interleaving them
in any order yields the same transaction and storage states. At a more granular level, two
bytecode operations conflict if applying them in different orders yields different storage states.
Most bytecode operations, such as arithmetic operations and others that interact with local
state, commute with one another. Bytecode operations that interact with shared state, on
the other hand, can potentially conflict.

The EVM operations SLOAD and SSTORE read from and write to persistent storage,
respectively, and are used for nearly every state access and state modification. By far the
most common conflicts arise from conflicting these two operations. Other kinds of conflicts,
while possible, are assumed to be too rare to monitor. For example, one transaction might
create a new contract, while another calls the newly created contract in a way that creates a
race condition: the call may or may not arrive before the contract is initialized. There is also
a bytecode operation that reads a given account’s balance, which is part of the blockchain’s
shared state.

We detect conflicts by associating a read-write lock with each storage location. Each
SLOAD (respectively, SSTORE) operation requests that location’s lock in read (write) mode.
If a transaction requests a lock that is already held in a conflicting mode by another
transaction, the requesting transaction is rolled back and deferred to the next phase. No
locks are released until the concurrent phase ends, even those held by aborted transactions.
This is to ensure that no interleaving of transactions in the concurrent bin result in a conflict
when re-executed by validators.

4.3 Sampling and Evaluation

In this section, we evaluate the concurrent speculative execution strategy on the data set
of transaction traces as described in the experimental setup (see Section 4.1). Traces from
the historical Ethereum blockchain are used to simulate what would have happened if the
original blocks of transactions were instead re-executed concurrently.

Our principal figure of merit is speed-up: the ratio between the time to execute a block’s
transactions sequentially, and the time to execute the same transactions concurrently and
speculatively. For now, we use cumulative gas costs as a proxy for time. Then to estimate
speed-up, we measure the ratio between (1) the gas consumed to execute a block’s transactions
sequentially, versus (2) the maximum gas used by any thread in the parallel phase plus the
gas needed to execute the sequential phase. Note that an aborted transaction may be counted
twice: once (partially) in the concurrent phase, up to when the transaction is aborted, and
once in the sequential phase when the aborted transaction is re-executed in isolation.
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4.4 Baseline Results
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Figure 4 Average speed-up and conflict rate for each of the seven historical time intervals.
Increased Ethereum activity over time is reflected by decreasing speed-up and higher conflict rates.

Figure 4 summarizes speed-up statistics over the seven historical periods, along with the
conflict rates, or the percentage of contract calls that abort per block. The average speed-up
and conflict rate are shown for simulated VMs of 16, 32, and 64 cores, where averages are
weighted by the number of contract call transactions in each block.

Earlier periods display higher speed-ups and lower conflict rates because transaction
volume and contention are low. For example, speed-up is as high as 3.23 in the second
historical period on a simulated EVM with 16 cores, and this number rises to 8.87 for a 64
core EVM. During the same interval, contract calls abort at a rate of only 20%.

As the volume of transactions increases over time, however, so does the rate of transaction
conflict, so more time is spent sequentially re-executing transactions aborted during the
concurrent phase. This naturally leads to lower speed-ups, since there is less opportunity to
parallelize transaction execution. Indeed, during the December 2017 period, with 16 threads,
roughly 34% of transactions abort. Nevertheless, it is notable that there is still a modest but
positive speed-up of 1.13 even then. Moreover, this speed-up effectively doubles, to slightly
more than 2 when there are 64 threads. When transaction volume is higher, using more
threads yields more speed-up.

4.5 Speed-up Distributions

The average speed-up of each historical period provides little insight into how the blocks’ speed-
ups are distributed in each period. Here, we further analyze the performance of speculative
execution by looking at the distributions of these speed-ups. Due to space limitations, we
focus on historical periods 5, 6, and 7, since these have the highest transaction volumes.
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Speed-up Distribution: Period 5, 32 Cores
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Figure 5 Speed-up distributions for each combination of historical periods 5, 6, and 7, and with
16, 32, and 64 cores. Each plot depicts one such combination. Blocks are binned in increments of
0.25 according to speed-up realized. Distributions are normalized so that total area is roughly 1.

Speed-up distributions of the three periods are depicted in Figure 5. Each plot is
normalized to represent an approximate probability density, so that the y-axis is interpreted
as a relative count. Since there is relatively less contention in Periods 5 and 6, their speed-up
distributions are flatter, with longer tails. This is because more blocks during these periods
are able to exhibit a higher amount of speed-up. However, when the transaction rate is
higher, as in seventh period of December 2017, the distributions are concentrated closed to 1,
since more work is wasted as the number of aborted transactions rises.

As noted before, some blocks may realize a slowdown when using our concurrent execution
strategy, a result of the cost of aborting and re-executing conflicting transactions. The relative
number of such blocks is shown in plots of Figure 5, where regions to the left of 1 represent
blocks that are slowed down. Making more cores available to the EVM appears to reduce the
number of slowed-down blocks for each of the three historical periods. Though fewer than
3% blocks are slowed down for both Periods 5 and 6 when using 16 cores, this percentage
jumps to 46% for Period 7. However, when the EVM’s number of cores is increased to 32,
the percentage of blocks that are slowed down drops substantially to only 13%.

4.6 Storage Hot-Spots
Next, we investigate transaction contention by analyzing how often certain storage addresses
are accessed by transactions. In particular, we look at memory addresses that are conflict
points for pairs of transactions, and how many times each such address results in a conflict.
Addresses that attract a high number of conflicts are informally called hot-spots.
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Figure 6 Histograms of conflicts per address. Addresses that results in a large number of conflicts
are hot-spots. Period 7 has a much heavier tail, corresponding to many more address hot-spots.

In Figure 6, we plot histograms illustrating the number of conflicts per address, for
historical periods 5, 6, and 7. Each storage address with at least one conflict is binned
according to how many conflicts occurred at that address. For example, in Period 5, there
are 2562 unique storage addresses at which there were exactly 2 conflicts. Periods 5 and 6
have relatively few storage addresses with high contention, and this pattern is similar to
the earlier historical periods. However, Period 7’s histogram has a much heavier tail than
the other two histograms, meaning that there are many more storage addresses with larger
numbers of conflicts. In other words, there is a handful of addresses that many different
transactions attempt to access, most likely a result of so many transactions calling the same
few contracts. We elaborate on this observations in Section 5.6 below.

5 Alternative Experiments

We extended the baseline experiment with a number of other experiments intended to test
the effectiveness of alternative strategies, and to test the sensitivity of our approximations.

5.1 Sampling
To test whether sampling 1 in 10 blocks during a period yielded a distorted view, we ran
a detailed simulation of one period (Period 5) to compare the results with the sampled
simulation. There is a modest difference in speed-up, and an even more negligible difference
in abort rate. Some discrepancy can also be explained by the inherent randomness of a
concurrent scheduler.

Sampling rate
Speed-up Abort rate

16 cores 32 cores 64 cores 16 cores 32 cores 64 cores

1-in-10 sampling 2.063 2.694 2.859 25.98% 27.23% 27.88%

All blocks 2.085 2.717 2.913 25.96% 27.21% 27.86%

Figure 7 Accuracy of 1-in-10 sampling for historical period 5.

5.2 Multiple Phases
The greedy, two-phase strategy can be generalized to encompass multiple concurrent phases,
so that each transaction that was deferred in one concurrent phase is instead re-executed
in another subsequent concurrent phase. It is possible that multiple concurrent phases
could provide additional speed-up. However, as illustrated in Figure 8a, we found in our



V. Saraph and M. Herlihy 4:11

experiments that executing two concurrent phases almost always yields less speed-up than
executing a single concurrent phase. This decrease is due to the duplicate work performed by
transactions rolled back in multiple phases, with not enough additional speed-up yielded in
the latter concurrent phases. Therefore, in practice, one current phase is sufficient to realize
almost all potential concurrency.
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(a) Speed-up with multiple concurrent phases
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(b) Speed-up when the EVM uses mutex locks
to lock storage addresses.

Figure 8 Multiple phases and data conflicts figures.

5.3 Data Conflicts
In our simulated concurrent EVM, transactions access storage addresses by first acquiring a
read-write lock. This allows multiple transactions to read an address, with no conflict, if
there are no concurrent writers. In principle, this decreases the number of conflicts when
compared to using mutex locks, hence increasing the potential speed-up.

To determine whether read-write locks reduce data conflicts in practice, we investigated
the effect of simplifying the conflict model by merging all data accesses into a single conflict
set, by using mutex locks for conflict detection. With the exception of the last historical
period in which speed-up is already low, the speed-ups were substantially worse than the
speed-ups obtained by distinguishing between read and write accesses. See Figure 8b for a
comparison of the two locking schemes when using 16 cores. These results suggest that there
is significant value in implementing a concurrent EVM with read-write locks, instead of the
simpler mutex locks.

5.4 Proxies for Time
Since we do not have access to an actual concurrent EVM, we must estimate how long it
takes to execute each transaction. There are two straightforward choices: we can count the
number of instructions executed by each transaction, or we can tally the gas cost of executing
the transaction’s instructions. The first choice assumes that each EVM instruction takes
roughly the same time to execute, while the second assumes that instruction gas cost is
roughly proportional to execution time. For example, the arithmetic operations MUL and
DIV require 5 units of gas, while SSTORE and SLOAD cost 200001 and 200 units respectively.

All speed-ups reported so far were measured in terms of gas costs. As a sanity check,
for 16 cores, we recomputed speed-ups using instruction count as a proxy for time. These
speed-ups are shown in Figure 9a. There does not appear to be any significant qualitative
difference between gas cost and instruction count.

1 SSTORE costs 20000 units when storing a non-zero value, but costs only 5000 units otherwise.
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Figure 9 Proxies for time and static conflict prediction figures.

5.5 Static Conflict Prediction

If we were able to predict whether a transaction would abort if executed speculatively, then
we could save the cost of transaction roll-back and retry. We can simulate the effect of a
perfect conflict predictor simply by ignoring the cost of aborted transactions, as in Figure
9b. However, doing so yields a negligible change in speed-ups, less than 0.1% in most cases.
The only exception is the very last period (December 2017), where contention was very
high. For that historical period, the average speed-up increases from 1.13 to 1.22. These
numbers suggest that static conflict analysis, if accurate enough, may yield modest gains
during periods of high contention.

5.6 Omitting Hot-spot Contracts

In most of the previous analysis, Period 7 stands out among the selected historical periods
as being particularly high volume and contentious. Recall that this period was sampled from
December 2017, which is close to peak Ethereum transaction activity. More specifically, Period
7 occurred when there was great interest from the general public over CryptoKitties [2] [6], a
recreational game deployed on Ethereum in which users create, breed, and trade virtual cats.
The popularity of CryptoKitties is especially apparent when using any blockchain explorer to
browse Ethereum transactions during December 2017. The popularity of CryptoKitties was
responsible for congesting the Ethereum network, though interest in it has since died down.

In light of the CryptoKitties frenzy, we reanalyzed Period 7 under a hypothetical scenario
in which the CryptoKitties contracts 2 did not exist. This is easily accomplished by ignoring
all calls to the CryptoKitties contracts when tracing each block’s transactions and replaying
them, and calculating the resulting statistics.

2 The vast majority of calls to CryptoKitties are to its core contract (which has address hash
0x06012c8cf97bead5deae237070f9587f8e7a266d), and to an auction contract (which has address hash
0xb1690c08e213a35ed9bab7b318de14420fb57d8c).
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Figure 10 Speed-up analysis after removing high-contention or high-volume contracts.

After filtering out all calls to CryptoKitties contracts, speed-up using 16 cores rises from
1.13 to 1.65. These calls accounted for about 31% of all contract calls, and furthermore, by
filtering out CryptoKitties, the number of contract calls per block drops from 62 to 43, which
is much closer to the 46 calls per block in Period 6. While a speed-up of 1.65 does not quite
match speed-up from older periods, it is still clear from this simple analysis that much of the
contention in Period 7 is caused solely by CryptoKitties.

To further illustrate the impact that CryptoKitties had, we reproduce the conflict histo-
gram from the previous section, using the same hypothetical scenario with no CryptoKitties.
Recall that the conflict histogram of Period 7 had a much heavier tail than the corresponding
histograms of older intervals. However when CryptoKitties is removed, Period 7’s histogram
(Figure 10a) has a much thinner tail, resembling the other histograms. Indeed, in Period 6,
10% of conflicting storage addresses have at least 5 conflicts, but in Period 7, this same number
is 30%. However, if CryptoKitties contracts are ignored, then only 14% or conflicting address
have at least 5 conflicts. These numbers demonstrate that CryptoKitties is responsible for
many storage hot-spots.

We generalize this analysis to the other historical periods by determining the top five
most conflicting smart contracts in each period, and reproducing scenarios where none of the
highly conflicting contracts were called. As shown in Figure 10b, this results in a noticeable
speed-up in each period, not just the 7th. Most of these highly conflicting contracts are
actually token contracts; in fact, the most contentious contract from each period is either a
token (or a token exchange) contract. Therefore, analyzing these small sets of contracts may
provide insight into how to reduce contention when speculatively executing smart contracts
in parallel.

6 Discussion

As noted, this study is exploratory, incorporating various approximations and omissions. Most
such omissions are the result of the absence of a standard concurrent EVM implementation.
This study does not account for some EVM overheads, such as the costs for value transfers,
where one account transfers ether directly to another, without modifying storage. Value
transfers typically commute, and are likely much faster to execute than contract calls, though
they do make up the majority of all Ethereum transactions. Other sources of overhead
include solving a cryptographic puzzle to compute proof of work, which would affect miners’
speed-up but not the validators’.
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In the absence of a timing model for a concurrent EVM, this study uses gas costs (or
instruction counts) as proxies for time when computing speed-up. As noted, both proxies
yield essentially equivalent results.

This study relies on sampled blocks because the volume of data in the Ethereum block-
chain is simply too large to make exhaustive analysis practical or rewarding. An archive
synchronization of the blockchain was a major computational overhead for this study, in addi-
tion to recovering transaction traces. These overheads may be reduced as further Ethereum
tools and utilities are developed.

There are several reasons why speculative parallelism may sometimes yield little, or even
negative speed-up. For example, a block might contain one transaction substantially longer
than the others, whose execution time dominates the block execution time. In this case, it is
impossible to achieve much speed-up, no matter how these transactions are scheduled and
distributed among multiple cores. Or if a block contains very few contract call transactions,
there is little opportunity for speed-up. If a block’s transactions all access the same storage
location, perhaps because they all access the same popular contract [6], then speculation will
produce a negative speed-up as a result of the cost of rolling back so many misspeculated
transactions.

7 Conclusions

Our results suggest that a simple speculative strategy based on read-write set overlap can
produce non-trivial speed-ups, but that such speed-ups will decline as transaction rates
and conflict rates increase. More aggressive strategies, such as adding additional parallel
phases, seem to provide little additional benefit, because conflict appears to be bursty: if one
transaction conflicts with another, then it probably conflicts with multiple others.

The results of this study suggest that the most promising way to further increase
parallelism in Ethereum-style smart contract execution is to reduce the conflict rate, perhaps
by focusing on reducing unnecessary conflicts. We observed that splitting transactions’ data
sets into read sets and write sets decreased conflict rates substantially, suggesting that conflict
rates are sensitive to the semantics of concurrent operations on shared data. This observation
suggests that conflict rates might be reduced even further if the execution engine could do
a better job of recognizing when operations commute at the semantic level. For example,
transactions that increment or decrement the same account balance (a common occurrence)
have overlapping read and write sets, and are therefore deemed to conflict. At the semantic
level, however, these operations commute (in the absence of overflow or underflow), so as long
as the virtual machine’s memory operations are atomic, those operations need not conflict.
(Our study could not detect which conflicts are real, and which are artifacts, because only
compiled bytecode was available for analysis).

It might be profitable to investigate the effects of endowing the virtual machine with
intrinsic data types such as atomic counters or atomic sets that provide many commuting
mutator operations. Studying highly conflicting token contracts may provide insight into
which kinds of data types or operations would best alleviate contention.

Periods of high contention and low speed-up are caused by a relatively small number
of popular contracts. Currently, smart contract designers have no guidance how to avoid
speculative data conflicts, nor any incentive to do so. Our results suggest that there is a need
to devise incentives for smart contract programmers to design contracts in ways that reduce
conflicts, either by eliminating spurious conflicts, or by exploiting improved commuting
bytecode instructions.
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Abstract
The various applications using Distributed Ledger Technologies (DLT) or blockchains, have led to
the introduction of a new “marketplace” where multiple types of digital assets may be exchanged.
As each blockchain is designed to support specific types of assets and transactions, and no blockchain
will prevail, the need to perform interblockchain transactions is already pressing.

In this work we examine the fundamental problem of interoperable and interconnected blockchains.
In particular, we begin by introducing the Multi-Distributed Ledger Objects (MDLO), which is the
result of aggregating multiple Distributed Ledger Objects – DLO (a DLO is a formalization of the
blockchain) and that supports append and get operations of records (e.g., transactions) in them from
multiple clients concurrently. Next we define the AtomicAppends problem, which emerges when the
exchange of digital assets between multiple clients may involve appending records in more than one
DLO. Specifically, AtomicAppend requires that either all records will be appended on the involved
DLOs or none. We examine the solvability of this problem assuming rational and risk-averse clients
that may fail by crashing, and under different client utility and append models, timing models,
and client failure scenarios. We show that for some cases the existence of an intermediary is
necessary for the problem solution. We propose the implementation of such intermediary over a
specialized blockchain, we term Smart DLO (SDLO), and we show how this can be used to solve the
AtomicAppends problem even in an asynchronous, client competitive environment, where all the
clients may crash.
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1 Introduction

Blockchain systems, cryptocurrencies, and distributed ledger technology (DLT) in general,
are becoming very popular and are expected to have a high impact in multiple aspects of
our everyday life. In fact, there is a growing number of applications that use DLT to support
their operations [26]. However, there are many different blockchain systems, and new ones are
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proposed almost everyday. Hence, it is extremely unlikely that one single DLT or blockchain
system will prevail. This is forcing the DLT community to accept that it is inevitable to
come up with ways to make blockchains interconnect and interoperate.

The work in [7] proposed a formal definition of a reliable concurrent object, termed
Distributed Ledger Object (DLO), which tries to convey the essential elements of blockchains.
In particular, a DLO is a sequence of records, and has only two operations, append and get.
The append operation is used to attach a new record at the end of the sequence, while the
get operation returns the sequence.

In this work we initiate the study of systems formed by multiple DLOs that interact
among each other. To do so, we define a basic problem involving two DLOs, that we call the
Atomic Append problem. In this problem, two clients want to append new records in two
DLOs, so that either both records are appended or none. The clients are assumed to be
selfish, but rational and risk-averse [21], and may have different incentives for the different
outcomes. Additionally, we assume that they may fail by crashing, which makes solving the
problem more challenging. We observe that the problem cannot be solved in some system
models and propose algorithms that solve it in others.

1.1 Related Work
The Atomic Append problem we describe above is very related to the multi-party fair
exchange problem [8], in which several parties exchange commodities so that everyone gives
an item away and receives an item in return. The proposed solutions for this problem rely on
cryptographic techniques [17,19] and are not designed for distributed ledgers. In this paper,
as much as possible, we want to solve Atomic Appends on DLOs via their two operations
append and get, without having to rely on cryptography or smart contracts.

Among the first problems identified involving the interconnection of blockchains was
Atomic Cross-chain Swaps [13], which can also be seen as a version of the fair exchange
problem. In this case, two or more users want to exchange assets (usually cryptocurrency) in
multiple blockchains. This problem can be solved by using escrows, hashlocks and timelocks:
all assets are put in escrow until a value x with a special hash y = hash(x) is revealed or a
certain time has passed. Only one of the users knows x, but as soon as she reveals it to claim
her assets, everyone can use it to claim theirs. Observe that this solution assumes synchrony
in the system, in the sense that timelocks assume that the time to claim an asset is bounded
and known, and that timeouts can be used to detect crashes.

This technique was originally proposed in on-line fora for two users [1], and it has been
specified, validated, adapted, and used [20, 25]. For instance, the Interledger system [11]
will use a generalization of atomic swaps to transfer (and exchange) currency in a network
of blockchains and connectors, allowing any client of the system to interact with any other
client. The Lightning network [18, 22] also allows transfers between any two clients via a
network of micro-payment channels using a generalized atomic swap. Both Interledger and
Lighting route and create one-to-one transfer paths in their respective networks. Herlihy [13]
has formalized and generalized atomic cross-chain swaps beyond one-to-one paths, and shows
how multiple cross-chain swaps can be achieved if the transfers form a strongly connected
directed graph. Herlihy proves that the best strategy, in Game Theoretic sense, for the users
is to follow the proposed algorithm, and that someone that follows it will never end up worst
than at the start.

Unlike in most blockchain systems, in Hyperledger Fabric [5, 6] it is possible to have
transactions that span several blockchains (blockchains are called channels in Hyperledger
Fabric). This allows solving the atomic cross-chain swap problem using a third trusted
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channel or a mechanism similar to a two-phase commit [5]. Additionally, these solutions
do not require synchrony from the system. The ability of channels to access each other’s
state and interact is a very interesting feature of Hyperledger Fabric, very in line with the
techniques we assume from advanced distributed ledgers in this paper. Unfortunately, they
seem to be limited to the channels of a given Hyperledger Fabric deployment.

There are other blockchain systems under development that, like Hyperledger Fabric,
will allow interactions between the different chains, presumably with many more operations
than atomic swaps. Examples are Cosmos [2] or PolkaDot [4]. These systems will have their
own multi-chain technology, so only chains in a given deployment can initially interact, and
other blockchain will be connected via gateways. Another proposal for interconnection of
blockchains is Tradecoin [12], whose target is to interconnect all blockchains by means of
gateways, trying to reproduce the way Internet works. Since the gateways will be clients of
the blockchains, the functionality of the global interledger system will be limited by what
can be done from the edge of the blockchains (i.e., by the blockchains’ clients).

The practical need of blockchain systems to access the outside world to retrieve data (e.g.,
exchange rates, bank account balances) has been solved with the use of blockchain oracles.
These are relatively reliable sources of data that can be used inside a blockchain, typically
in a smart contract. The weakest aspect of blockchain oracles is trust, since the outcome
or actions of a smart contract will be as reliable as the data provided by the oracle. As of
now, it seems there is no good solution for this trust problem, and blokchains have to rely
on oracle services like Oraclize [3].

1.2 Contributions
As mentioned above, in this paper we extend the study of the distributed ledger reliable
concurrent object DLO started in [7] to systems formed of several such objects. Hence, the
first contribution is the definition of the Multiple DLO (MDLO) system, as the aggregation of
several DLOs (in similar way as a Distributed Shared Memory is the aggregation of multiple
registers [24]). The second contribution is the definition of a simple basic problem in MDLO
systems: the 2-AtomicAppends problem. In this problem, the objective is that two records
belonging to two different clients are appended to two different DLOs atomically. Hence,
either both records are appended or none is. Of course, this problem can be generalized
in a natural way to the k-Atomic Appends problem, involving k clients with k records and
up to k DLOs.

Another contribution, in our view, is the introduction of a crash-prone risk-averse rational
client model, which we believe is natural and practical, especially in the context of blockchains.
In this model, clients act selfishly trying to maximize their utility, but minimizing the risk
of reducing it. We consider that this behavior is not a failure, but the nature of the client,
and any algorithm proposed under this model (e.g., to solve the 2-AtomicAppends problem)
must guarantee that clients will follow it, because their utility will be maximized without
any risk. For a complete specification of the clients’ rationality their utility function has to
be provided. Two utility models are proposed. In the collaborative utility model, both clients
want the records to be appended over any other alternative. In the competitive utility model
a client still wants both records appended, but she prefers that only the other client appends.
This client model is complemented with the possibility that clients can fail by crashing.

We explore hence the solvability of 2-AtomicAppends in MDLO systems in which the
DLOs are reliable but may be asynchronous, and the clients are rational but may fail by
crashing. The first results we present consider a system model in which clients do not crash,
and show that Collaborative 2-AtomicAppends can be solved even under asynchrony, while
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Competitive 2-AtomicAppends cannot be solved. Then, we further study Collaborative
2-AtomicAppends if clients can crash. In the case that at most one of the two clients can
crash, we show that, if each client must append its own record (what we call no delegation),
Collaborative 2-AtomicAppends cannot be solved even under synchrony. This justifies
exploring the possibility of delegation: any client can append any record, if she knows it. We
show that in this case Collaborative 2-AtomicAppends can be solved, even if the system is
asynchronous (termination is only guaranteed under synchrony, though). However, delegation
is not enough if both clients can crash, even under synchrony. (See Table 2 for an overview.)

The negative results (for Competitive 2-AtomicAppends even without crash failures and
for Collaborative 2-AtomicAppends with up to 2 crashes) justifies exploring alternatives
to appending directly or delegating among clients. Hence, we propose the use of an entity,
external to the clients, that coordinates the appends of the two records. In fact, this entity is
a special DLO with some level of intelligence, which we hence call Smart DLO (SDLO). The
SDLO is by design a reliable entity to which clients can delegate (via appending in the SDLO)
the responsibility of appending their records to their respective DLOs when convenient. The
SDLO hence collects all the records from the clients and appends them. Since the SDLO is
reliable, all the appends will complete. If some record is missing, the SDLO issues no append,
to guarantee the properties of the 2-AtomicAppends problem. Thus, the SDLO can be used
to solve Competitive and Collaborative k-AtomicAppends even when all clients can crash.

We believe that SDLO opens the door to a new type of interconnection and interoperability
among DLOs and blockchains. While the use of oracles to access external information in
a smart contract (maybe from another blockchain) is widely known, we are not familiar
with blockchain systems in which one blochchain (i.e., possibly a smart contract) issues
transactions in another blockchain. We believe this is a concept worth to be explored further.

The rest of the paper is structured as follows. The next section describes the model used
and defines the AtomicAppends problem. Section 3 explores the 2-AtomicAppends problem
when clients cannot crash. Section 4 studies the 2-AtomicAppends problem when clients can
crash but SDLOs are not used. Section 5 introduces the SDLO and shows how it solves the
AtomicAppends problem. Finally, Section 6 presents conclusions and future work.

2 Problem Statements and Model of Computation

2.1 Objects and Histories
An object type T is defined over the domain of values that any object of type T may take,
and the operations that any object of type T supports. An object O of type T is a concurrent
object if it is a shared object accessed by multiple processes [23]. A history of operations on
an object O, denoted by HO , is the sequence of operations invoked on O. Each operation π
contains an invocation and a matching response event. Therefore, a history is a sequence of
invocation and response events, starting with an invocation. We say that an operation π
is complete in a history HO , if the history contains both the invocation and the matching
response events of π. History HO is complete if it only contains complete operations. History
HO is well-formed if no two invocation events that do not have a matching response event in
HO belong to the same process p. That is, each process p invokes one operation at a time.
An object history HO is sequential, if it contains a sequence of alternating invocation and
matching response events, starting with an invocation and ending with a response. We say
that an operation π1 happens before an operation π2 in a history HO , denoted by π1 → π2,
if the response event of π1 appears before the invocation event of π2 in HO .
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The Ledger Object (LO). A ledger L (as defined in [7]) is a concurrent object that stores
a totally ordered sequence L.S of records and supports two operations (available to any
process p): (i) L.getp(), and (ii) L.appendp(r). A record is a triple r = 〈τ, p, v〉, where p is
the identifier of the process that created record r, τ is a unique record identifier from a set
T , and v is the data of the record drawn from an alphabet Σ. We will use r.p to denote the
id of the process that created record r; similarly we define r.τ and r.v. A process p invokes
an L.getp() operation to obtain the sequence L.S of records stored in the ledger object L,
and p invokes an L.appendp(r) operation to extend L.S with a new record r. Initially, the
sequence L.S is empty.

I Definition 1 (Sequential Specification of a LO [7]). The sequential specification of a ledger
L over the sequential history HL is defined as follows. The value of the sequence L.S of the
ledger is initially the empty sequence. If at the invocation event of an operation π in HL the
value of the sequence in ledger L is L.S = V , then:
1. if π is an L.getp() operation, then the response event of π returns V , while the value of
L.S does not change, and

2. if π is an L.appendp(r) operation (and r /∈ V ), then at the response event of π the value
of the sequence in ledger L is L.S = V ‖r (where ‖ is the concatenation operator).

In this paper we assume that ledgers are idempotent, therefore a record r appears only
once in the ledger even when the same record r is appended to the ledger by multiple append
operations (and hence the r /∈ V in the definition above).

2.2 Distributed Ledger Objects (DLO) and Multiple DLOs (MDLO)
Distributed Ledger Objects (DLO). A Distributed Ledger Object (DLO) DL, is a concur-
rent LO that is implemented by (and possibly replicated among) a set S of (possibly distinct
and geographically dispersed) computing devices, we refer as servers. Like any LO, DL
supports the operations get() and append(). We refer to the processes that invoke the get()
and append() operations on DL as clients.

Each server s ∈ S may fail. Thus, the distribution and replication of DL offers availability
and survivability of the ledger in case a subset of servers fail. At the same time, the fact that
multiple clients invoke append() and get() requests to different servers, raises the challenge
of consistency: what is the latest value of the ledger when multiple clients access the ledger
concurrently? The work in [7] defined three consistency semantics to explain the behavior of
append() and get() operations when those are invoked concurrently by multiple clients on a
single DLO. In particular, they defined linearizable [14, 16], sequential [15], and eventual [9]
consistent DLOs. In this work we will focus on linerizable DLOs which according to [7] are
defined as follows:

I Definition 2 (Linearizable Distributed Ledger Object [7]). A distributed ledger DL is linear-
izable if, given any complete, well-formed history HDL, there exists a sequential permutation
σ of the operations in HDL such that:
1. σ follows the sequential specification of a ledger object (Definition 1), and
2. for every pair of operations π1, π2, if π1 → π2 in HDL, then π1 appears before π2 in σ.

Multiple DLOs (MDLO). A Multi-Distributed Ledger Object MDL, termed MDLO, con-
sists of a collection D of (heterogeneous) DLOs and supports the following operations: (i)
MDL.getp(DL), and (ii) MDL.appendp(DL, r). The get returns the sequence of records
DL.S, where DL ∈ D. Similarly, the append operation appends the record r to the end
of the sequence DL.S, where DL ∈ D. From the locality property of linearizability [14] it
follows that a MDLO is linearizable, if it is composed of linearizable DLOs. More formally:
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I Definition 3 (Linearizable Multi-Distributed Ledger Object). A multi-distributed ledger
MDL is linearizable if ∀DL ∈ D, DL is linearizable, where D is the set of DLOs MDL
contains.

For the rest of this paper, unless otherwise stated, we will focus on MDLOs consisting
of two DLOs. The same techniques can be generalized in MDLOs with more than two
DLOs. In particular, we consider the records of two clients, A and B, on two different
DLOs. For convenience we use DLOX to denote the DLO appended by records from X, for
X ∈ {A,B}. Similarly we denote as rX the record that X ∈ {A,B} wants to append on
DLOX . Furthermore, we view the DLOs and MDLOs as black boxes that reliably implement
the specified service, without going into further implementation details.

2.3 AtomicAppends: Problem Definition

Multi-DLOs allow clients to interact with different DLOs concurrently. This is safe when the
records involved in concurrent operations are independent. However, it may raise semantic
consistency issues when there exists inter-dependent records, e.g. a record rA must be
inserted in DLOA when a record rB is inserted in DLOB and vice versa. More formally, we
say that a record r depends on a record r′, if r may be appended on its intended DLO, say
DL, only if r′ is appended on a DLO, say DL′. Two records, r and r′, are mutually dependent,
if r depends on r′ and r′ depends on r. In this section we define a new problem, we term
AtomicAppends, that captures the properties we need to satisfy when multiple operations
attempt to append dependent records on different DLOs.

I Definition 4 (2-AtomicAppends). Consider two clients, A and B, with mutually dependent
records rA and rB. We say that records rA and rB are appended atomically on DLOA and
DLOB respectively, when:

Either both or none of the records are appended to their respective DLOs (safety)
If neither A nor B fail, then both records are appended eventually (liveness).

An algorithm solves the 2-AtomicAppends problem under a given system model, if it
guarantees the safety and liveness properties of Definition 4.

The k-AtomicAppends problem, for k ≥ 2, is a generalization of the 2-AtomicAppends
that can be defined in the natural way (k clients, with k records, to be appended to up to k
DLOs.) From this point onwards, we will focus on the 2-AtomicAppends problem, and when
clear from the context, we will refer to it simply as AtomicAppends.

2.4 Communication, Timing and Append Models

The previous subsections are independent of the communication medium, and the failure
and timing model. We now specify the communication and timing assumptions considered
in the remainder of the paper. We also consider different models on who can append a
specific record.

Communication model. We assume a message-passing system where messages are neither
lost nor corrupted in transit. This applies to both the communication among clients and
between clients and DLOs (i.e, the invocation and response messages of the operations).
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Timing models. We consider synchronous and asynchronous systems with respect to both
computation and communication. In the former, the evolution of the system is governed by a
global clock and a local computation, a message delivery or a DLO operation is guaranteed to
complete within a predefined time-frame. For simplicity, we set this time-frame to correspond
to one unit of time. In the latter, no timing assumptions are made beyond that they will
complete in a finite time.

Append models. We consider three different append models. In the first, and most
restrictive one, which we refer to as Client appends with no delegation, or NoDelegation for
short, the only way a client can append its record, is by issuing append operations directly
to the corresponding DLOs, i.e., no other entity, including the other client, can do so. The
second one, referred to as Client appends with delegation, or WithDelegation for short, is a
relaxation of the first model, in which one client can append the record of the other client (if
it knows it). Finally, in the third model, a record can be appended by an external (w.r.t.
the clients) entity, provided it knows the record.

2.5 Client Model and Utility-based Problem Definitions

2.5.1 Client Setting
We assume that clients are rational, i.e., they act selfishly, in a game-theoretic sense, in
order to increase their utility [21]. Furthermore, clients are risk-averse, i.e., when uncertain,
they prefer to lower the uncertainty, even if this might lower their potential utility [21]; we
consider a client to be uncertain when her actions may lead to multiple possible outcomes.
To this respect, a rational, risk-averse client runs its own utility-driven protocol that defines
its strategy towards a given protocol (game), in such a way that it would not decrease its
utility or increase its uncertainty.

Regarding failures, the only type of failure we consider in this work, is crash failure, in
which a client might cease operating without any a priori warning.

Under this client model, an algorithm A solves the AtomicAppends problem, if
it provides enough incentive to the clients to follow this algorithm (which guarantees the
safety and liveness properties of Definition 4, possibly in the presence of crashes), without
any client deviating from its utility-driven protocol. If no such algorithm can be designed,
then the AtomicAppends problem cannot be solved.

2.5.2 Utility Models
Looking at the definition of the AtomicAppends problem, one might wonder what is the
incentive of the clients to achieve this both-or-none principle on the appends. Let UX denote
the utility function (or incentive) for each client X. A selfish rational client X will try to
maximize her utility UX . Depending on the possible combinations of values the clients’ utility
functions can take, we can identify a number of different scenarios, we refer as utility models.
Let us now motivate and specify two such utility models.

Collaborative utility model. Consider two clients A and B that have agreed to acquire a
property (e.g., a piece of land) in common, and each has to provide half of the cost. If one
of them, say A, pays while B backs off from the deal, then A incurs in expenses while not
getting the property. On the other hand, B loses no money in this case, but her reputation
may suffer. If both of them back off, they do not have any cost, while if both proceed with
the payments then they get the property, which they prefer.
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Table 1 The utility of client X ∈ {A, B} in the two utility models considered.

Utility model Utility of client X

Collaborative UX(both append) > UX(none appends) >

UX(only X̄ appends) > UX(only X appends)

Competitive UX(only X̄ appends) > UX(both append) >

UX(none appends) > UX(only X appends)

If UX() denotes the utility of agent X ∈ {A,B}, then we have the following relations in
the scenario described:

UX(both agents pay) > UX(no agent pays) > UX(only agent X̄ pays)
> UX(only agent X pays).

In relation to the AtomicAppends problem, record rA contains the transaction by which
client A pays her share of the deal, and the append of rA in DLOA carries out this payment.
Similarly for client B. So, here we see that under the above utility model, both clients
have incentive for both appends to take place. Observe that this situation is similar to the
Coordinated Attack problem [10], in which two armies need to agree on attacking a common
enemy. If both attack, then they win; if only one of them attacks, then that army is destroyed,
while the other is disgraced; if none of them attack, then the status quo is preserved.

These utility examples fall in the general utility model depicted in the first row of Table 1,
which we call collaborative. We will be referring to the AtomicAppends problem under this
utility model as the Collaborative AtomicAppends problem.

Competitive utility model. We now consider a different utility model. Consider two clients
A and B that have agreed to exchange their goods. E.g, A gives his car to B, and B gives
a specific amount as payment to A. If one of them, say A, gives the car to B, but B does
not pay, then A loses the car while not getting any money. On the other hand, B gets
the car for free! If both of them back off from the deal, then they do not have any cost.
Both proceeding with the exchange is not necessarily their highest preference (unlike in the
previous collaborative model).

So, if UX() denotes the utility of agent X ∈ {A,B}, then we have the following relations
in the scenario described:

UX(only X̄ proceeds) > UX(both agents proceed) > UX(no agent proceeds)
> UX(only X proc.).

In relation to the AtomicAppends problem, record rA contains the transaction transferring
the deed of A’s car to B, and the append of rA in DLOA carries out this transfer. Similarly,
rB contains the transaction by which client B transfers a specific monetary amount to A
(pays for the car), and the append of rB in DLOB carries out this monetary transfer. Observe
that this scenario is similar to the Atomic Swaps problem [13].

These utility examples fall in the general utility model depicted in the second row of
Table 1, which we call competitive. We will be referring to the AtomicAppends problem
under this utility model as the Competitive AtomicAppends problem.

No matter of the utility, failure or timing model assumed, our objective is to provide
a solution to the AtomicAppends problem. Our investigation will focus on identifying the
modeling conditions under which this is possible or not, and what is the impact of the model
on the solvability of the problem.
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3 AtomicAppends in the Absence of Client Crashes

We begin our investigation in a setting with no client crashes, so to study the impact of the
utility model on the solvability of the problem.

It is not difficult to observe that in the absence of crash failures, even under asynchrony
and NoDelegation, there is a straightforward algorithmic solution to the Collaborative
AtomicAppends problem: the algorithm simply has client A (resp. client B) issuing operation
append(DLOA, rA) (resp. append(DLOB , rB)). Based on Table 1, the clients’ utilities are
maximized when both append their corresponding records. Since there are no failures and
the DLOs are reliable, these operation are guaranteed to complete, nullifying the clients’
uncertainty. Hence, the clients will follow the algorithm, without deviating from their
utility-driven protocol. This yields the following result:

I Theorem 5. Collaborative 2-AtomicAppends can be solved in the absence of failures, even
under asynchrony and NoDelegation.

However, this is not the case for the Competitive AtomicAppends problem. The problem
cannot be solved, even in the absence of failures, in synchrony, and WithDelegation:

I Theorem 6. Competitive 2-AtomicAppends cannot be solved in the absence of failures,
even in synchrony and WithDelegation.

Proof. Let us firstly show that client A will never send its record rA to the other client B.
The reason is that this would carry a large risk of B appending rA itself (and A is risk-averse).
Observe that, independently on whether B already appended rB or not, this would reduce
A’s utility (see Table 1). Then, we secondly claim that client A will not directly append
its own record rA either. The reason is that, again, independently on whether B already
appended rB or not, this would reduce A’s utility (see Table 1). Hence, client A will not
have its record rA appended to DLOA ever. However, this violates the liveness property of
Definition 4, since by assumption neither A nor B fail by crashing. J

Note that the above result does not contradict the known solutions for atomic swaps
(e.g., [13]), as the primitives used are stronger than the ones offered by DLO (e.g., some form
of validation is needed for hashlocks). As we show in Section 5, the problem can be solved in
the model we consider, if a reliable external entity is used between the clients and the MDLO.
In view of Theorems 5 and 6, in the next section we focus on the study of Collaborative
AtomicAppends in the presence of crash failures.

4 Crash-prone Collaborative AtomicAppends with Client Appends

In this section we focus on the Collaborative AtomicAppend problem assuming that at least
one client may crash, under the NoDelegation and WithDelegation client append models.
Observe from Table 1 that both clients have incentive to get both records appended, versus
the case of no record appended, with respect to utilities. However, as we will see, in some
cases, crashes introduce uncertainty that renders the problem unsolvable.

4.1 Client Appends with No Delegation
We prove that Collaborative AtomicAppends cannot be guaranteed by any algorithm A, even
in a synchronous system, when at least one client crashes and the clients cannot delegate the
append of their records.
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I Theorem 7. When at least one client crashes, Collaborative 2-AtomicAppends cannot be
solved in the NoDelegation append model, even in a synchronous system.

Proof. Consider an algorithm A that clients can execute without deviating from their utility-
driven protocol. Assume algorithm A solves the Collaborative 2-AtomicAppends problem in
the model described. Let E be an execution of algorithm A in which no client crashes. By
liveness, both clients A and B must issue append operations. Consider the first client, say A
without loss of generality, that issues the append operation. Let us assume that A issues
append(DLOA, rA) at time t. Hence, B issues append(DLOB , rB) at time no earlier than t,
and A cannot verify that the record rB is in the corresponding DLOB until time t′ > t.

Now consider execution E′ of algorithm A that is identical to E, up to time t. Now at time
t client B crashes, and hence it never issues append(DLOB , rB). Since A cannot differentiate
until time t this execution from E, it issues append(DLOA, rA) at time t, appending rA

to DLOA. Even if after time t, A detects the crash of client B, by the specification of
NoDelegation, it cannot append record rB in DLOB. This, together with the fact that B
has crashed, yields that record rB is never appended to DLOB , violating safety. Hence, we
reach a contradiction, and algorithm A does not solve the Collaborative 2-AtomicAppends
problem. J

4.2 Client Appends With Delegation
Let us now consider the more relaxed client append model of WithDelegation. It is not
difficult to see that in this model, the impossibility proof of Theorem 7 breaks. In fact, it
is easy to design an algorithm that solves the collaborative AtomicAppends problem in a
synchronous system, if at most one client crashes. In a nutshell, first both clients exchange
their records. When a client has both records, it appends them (one after the other) to the
corresponding DLO; otherwise it does not append any record. We refer to this algorithm as
Algorithm ADSync and its pseudocode is given as Code 1. We show:

I Theorem 8. In the WithDelegation append model, Algorithm ADSync solves the Collabor-
ative 2-AtomicAppends problem in a synchronous system, if at most one client crashes.

Proof. If no client crashes, then the proof of the claim is straightforward. Hence, let us
consider the case that one client crashes, say A. There are three cases:
(a) Client A crashes before sending its record. In this case, client B will not append any

record and the problem is solved (none case).
(b) Client A crashes after sending its record, but before it does any append. In this case

client B will receive A’s record and append both records (both case).
(c) Client A crashes after it performs one or two of the appends. Client B will perform

both appends, and since DLOs guarantee that a record is appended only once (they are
idempotent), the problem is solved (both case).

The above cases and Table 1 suggest that the clients have no risk in running Algorithm
ADSync with respect to their utility-driven protocol. Hence, the claim follows. J

We note that algorithm ADSync solves the problem also in the asynchronous setting,
without of course being able to implement the “else” statement (line 5), since in asynchrony,
a client cannot distinguish the case on whether the other client has crashed or its message is
taking too long to arrive. To this respect, we slightly modify the description of the algorithm
to better highlight the inability to detect crashes. We refer to this version of the algorithm
as ADAsync; its pseudocode is given as Code 2. We show:

I Theorem 9. In the WithDelegation append model, Algorithm ADAsync solves the Collab-
orative 2-AtomicAppends problem in an asynchronous system, if at most one client crashes.
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Algorithm 1 ADSync: AtomicAppends WithDelegation, Synchrony, at most one crash; code for
Client X ∈ {A, B}.

1: send rX to client X̄

2: If rX̄ is received from client X̄ then
3: append(DLOX , rX)
4: append(DLOX̄ , rX̄)
5: Else (client X̄ has crashed)
6: no append

Algorithm 2 ADAsync: AtomicAppends WithDelegation, Asynchrony, at most one crash; code
for Client X ∈ {A, B}.

1: send rX to client X̄

2: wait until rX̄ is received from client X̄

3: append(DLOX , rX)
4: append(DLOX̄ , rX̄)

Proof. As before, we will prove this by case analysis. If no client crashes, then the proof
follows easily, given the fact that a DLOs guarantees that a record is appended only once.
Hence, let us consider the case that one client crashes, say A. There are three cases:
(a) Client A crashes before sending its record. In this case, client B will not proceed to

append any record (none case). Observe that client B might not terminate, but the
problem (safety) is not violated.

(b) Client A crashes after sending its record, but before it does any append. In this case
client B will receive A’s record and append both records (both case).

(c) Client A crashes after it performs one or two of the appends (it means it has sent its
record to client B). Client B will perform both appends, and since DLOs guarantee that
a record is appended only once, the problem is solved (both case).

The above cases and Table 1 suggest that the clients have no risk in running Algorithm
ADAsync with respect to their utility-driven protocol. Hence, the claim follows. J

As already discussed in case (a) of the above proof, it is possible for the client that has
not crashed to wait forever, as it cannot distinguish the case when the message is taking
too long to arrive and the append operation is taking too long to complete, from the case
when the other client has crashed. Hence, algorithm ADAsync, under certain conditions, is
non-terminating1.

Furthermore, it is not difficult to see that if both clients fail, neither algorithm ADAsync

nor algorithm ADSync can solve the Collaborative AtomicAppends problem. For example,
in the proof of Theorem 8, in case (b), client B could crash right after appending its own
record (i.e., rB is appended, but rA is not). This violates safety. In fact, we now show that
if both clients can crash, the problem is not solvable, even under synchrony.

I Theorem 10. When both clients can crash, the Collaborative 2-AtomicAppends problem
cannot be solved WithDelegation, even in a synchronous system.

Proof. Consider an algorithm A that clients can execute without deviating from their utility-
driven protocol. Assume algorithm A solves the Collaborative 2-AtomicAppends problem in
the model described. Let E be an execution of algorithm A in which no client crashes. By

1 Hence, in practice this may force a client to use timeouts in order to avoid blocking forever.
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liveness, both records rA and rB must be eventually appended. Consider the first record
appended, say rA w.l.o.g., and the client that issued the append operation, say A w.l.o.g.. Let
us assume that A issues append(DLOA, rA) at time t. Hence, append(DLOB , rB) is issued
at time no earlier than t, and A cannot verify that the record rB is in the corresponding
DLOB until time t′ > t.

Now consider execution E′ of algorithm A that is identical to E, up to time t. Now at time
t client B crashes, and hence it never issues append(DLOB , rB). Since A cannot differentiate
until time t this execution from E, it issues append(DLOA, rA) at time t, appending rA to
DLOA. Then, at time t+1 (immediately after append(DLOA, rA) completes) A also crashes,
and hence never issues append(DLOB , rB). Since append(DLOB , rB) is never issued, record
rB is never appended to DLOB, violating safety. Hence, we reach a contradiction, and
algorithm A does not solve the Collaborative 2-AtomicAppends problem. J

5 Crash-prone AtomicAppends with SDLO

Theorems 6 and 10 suggest the need to use some external intermediary entity, in order
to solve Competitive AtomicAppends, even in the absence of crashes, and Collaborative
AtomicAppends, in the case both clients crash, respectively. This is the subject of this section.

5.1 Smart DLO (SDLO)
We enhance the MDLO with a special DLO, called Smart DLO (SDLO), which is used by
the clients to delegate the append of their records to the original MDLO. This SDLO is an
extension of a DLO that supports a special “atomic appends” record of the form [client id,
{list of involved clients in the atomic append}, record of client]. When two clients
wish to perform an atomic append involving their records and their corresponding DLOs,
then they both need to append such an atomic appends record in the SDLO; this is like
requesting the atomic append service from the SDLO. Once both records are appended in the
SDLO, then the SDLO appends each record to the corresponding DLO. A pseudocode of this
mechanism, together with the client requests, called algorithm ASDLO is given as Code 3.

Algorithm 3 ASDLO: SDLO mechanism and requests from client X ∈ {A, B}; SDLO code only
for atomic appends.

1: Client X:
2: append(SDLO, [X, {X, X̄}, rX ])
3: upon receipt AppendAck from SDLO return
4: SDLO:
5: Init: S ← ∅
6: function SDLO.append([X, {X, X̄}, rX ])
7: S ← S ‖ [X, {X, X̄}, rX ]
8: if [X̄, {X, X̄}, rX̄ ] ∈ S then
9: append(DLOX , rX)
10: append(DLOX̄ , rX̄)
11: return AppendAck

So essentially the SDLO.append function in Code 3 can be viewed as a smart contract
that “collects” the append requests involved in the AtomicAppends instance and ultimately
executes them, by performing individual appends to the corresponding DLOs. Observe that
the SDLO does not access the state of DLOA and DLOB , but it needs to be able to perform
append operations to both of them. In other words, delegation is passed to the SDLO. Also
observe that the SDLO returns ack to a client’s request, once their atomic appends request
is appended in the SDLO, and not when the actual atomic append takes place.
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5.2 Solving AtomicAppends with SDLO
It is not difficult to observe that algorithm ASDLO can solve the AtomicAppends problem in
both utility models, even in asynchrony, and even if both clients crash. Note that SDLO,
being a distributed ledger by itself, is reliable despite the fact that some servers implementing
it may fail (more below). We show:

I Theorem 11. Algorithm ASDLO solves both the Collaborative and Competitive 2-
AtomicAppends problems in an asynchronous setting, even if both clients may crash.

Proof. We consider three cases:
1. If no client crashes, then algorithm ASDLO trivially solves the problem: Both clients

invoke the atomic appends request to the SDLO, these operations complete, and the
SDLO eventually triggers the two corresponding appends of records rA and rB to DLOA

and DLOB , respectively (both case).
2. At most one client crashes, say client A. Here we have two cases:

a. Record [A, {A,B}, rA] is never appended to the SDLO. Since the SDLO will never
contain both matching records, it will never append any of the records rA and rB

(none case).
b. Record [A, {A,B}, rA] is appended to the SDLO. Since record [B, {A,B}, rB] will

eventually be appended by B in the SDLO, it will proceed with the corresponding
appends of records rA and rB (both case).

3. Both clients crash. If one of the two clients, say A, crashes before appending [A, {A,B}, rA]
to the SDLO, then none of the appends of records rA and rB will take place in the
corresponding DLOs (none case). However, if both clients crash after they have appended
the matching atomic appends records, then both records rA and rB will be appended by
the SDLO (both case).

Observe that the above hold for both utility models. In Competitive AtomicAppends, if a
client does not invoke its atomic append request to the SDLO, it knows that the SDLO will
not proceed to append the other client’s record. This leaves the clients with their second best
utility (see Table 1), and hence, both have incentive to invoke the atomic append requests to
the SDLO. The reliability of the SDLO nullifies the uncertainty of the clients, and hence
they will follow algorithm ASDLO. J

Observe that algorithm ASDLO can easily be extended to solve the k-AtomicAppend
problem, for any k ≥ 2, provided that the utility of all records being appended is higher than
none being appended for all clients: All clients submit their atomic append request to the
SDLO, and then the SDLO performs the corresponding appends. Hence:

I Corollary 12. Both the Collaborative and Competitive k-AtomicAppends problems can be
solved with the use of SDLO in the asynchronous setting, even if all k clients may crash.

I Remark. As we discussed in the case 2 of the proof of Theorem 11, if client A crashes
and record [A, {A,B}, rA] is never appended to the SDLO, none of the records rA and rB

will be appended. Now, observe that client B can proceed to perform other operations
once it has appended [B, {A,B}, rB] (despite the fact that rB has not been appended to
DLOB , as it is up to the SDLO to do so). Since clients do not need to wait forever for any
operation, algorithm ASDLO is terminating with respect to the clients. Moreover, the SDLO
also terminates the processing of all the operations, as long as the appends in other DLOs
terminate.
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Implementation issues. In the above mechanism and theorem, we treat the SDLO as one
entity. Since, however, the SDLO is a distributed ledger implemented by collaborating
servers, there are some low-level implementation details that need to be discussed. If we
assume that the servers implementing the SDLO are prone to only crash faults and that the
SDLO is implemented using an Atomic Broadcast service, as described in [7], then algorithm
ASDLO can be implemented as follows: Clients A and B submit the atomic append requests
to all servers implementing the SDLO. Once a server appends an atomic append request
record to its local copy of the ledger, it checks if the matching record is already in the ledger.
If this is the case, it issues the two corresponding append operations for records rA and
rB . If up to f servers may crash, then it suffices that f + 1 servers, in total, perform these
append operations. Given that each record is appended to a DLO at most once (the append
operations are idempotent; if a record is already appended, it will not be appended again), it
follows that both records are appended in the corresponding DLOs.

6 Conclusion

We have introduced the AtomicAppends problem, where given two (or more in general)
clients, each needs to append a record to a corresponding DLO, and do so atomically with
respect to each other: either both records are appended or none. We have considered crash-
prone, rational and risk-averse clients based on two different utility models, Collaborative
and Competitive, and studied the solvability of the problem under synchrony/asynchrony,
different client append models and failure scenarios. Table 2 gives an overview of our results
(for two clients): if the problem can be solved, then we list the algorithm we developed,
otherwise we use the symbol “8”.

Table 2 Overview of the results. ND stands for NoDelegation and WD for WithDelegation.

Synchrony Asynchrony
ND WD SDLO ND WD SDLO

no crashes simple simple
up to one

ADSync A(?)
DAsyncCollaborative

both
8

8
8

8

no crashes
up to oneCompetitive

both
8

ASDLO

8

ASDLO

(?) might not terminate

Our results demonstrate a clear separation on the solvability of the problem based on the
utility model assumed when appends are done directly by the clients. When appends are
done using a special type of a DLO, which we call Smart DLO (SDLO), then the problem is
solved in both utility models, even in asynchrony and even if both clients may crash.

Our investigation of AtomicAppends did not look into the semantics of the records being
appended. Consider, for example, the following scenario. Say that clients A and B initiate
an atomic append request with records rA and rB, respectively. While the atomic append
request is being processed, say by the SDLO, client B appends a record r′ directly to DLOB .
It could be the case that the content of record r′ is such, that it would affect record rB . For
example, say that the atomic append involves the exchange of a deed of a car with bitcoins;
record rA contains the transfer of the deed and rB the transfer of bitcoins. If r′ involves the
withdrawal of bitcoins from the wallet of client B, and this is appended first, then it could
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be the case that the wallet no longer contains sufficient bitcoins to carry out the atomic
appends request. Even if we enforce the clients to perform all appends – not only atomic
appends – through the SDLO (which practically speaking is not desirable), still we need to
validate records. Therefore, to tackle such cases, we will need to consider validated DLOs
(VDLOs) [7]. This is a challenging problem, especially in asynchronous settings.
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Abstract
A key challenge of smart contract systems is the fact that many useful contracts require access to
information that does not natively live on the blockchain. While miners can verify the value of a
hash or the validity of a digital signature, they cannot determine who won an election, whether there
is a flood in Paris, or even what is the price of ether in US dollars, even though this information
might be necessary to execute prediction market, insurance, or financial contracts respectively.

A number of promising projects and research developments have provided a better understanding
of how one might construct a decentralized, binary oracle - namely an oracle that can respond by
one of two possibilities, typically “yes” or “no”, even while not requiring the interaction of a trusted
third party. In this work, we extend these ideas to construct a general-purpose, decentralized oracle
that can estimate the value of a real-world quantity that is in a dense totally ordered set, such
as R. In particular, this proposal can be used to estimate real number valued quantities, such as
required for a price oracle. We will establish a number of desirable properties about this proposal.
Particularly, we will see that the precision of the output is tunable to users’ needs.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechan-
ism design; Security and privacy → Distributed systems security

Keywords and phrases price oracle, Ethereum, blockchain

Digital Object Identifier 10.4230/OASIcs.Tokenomics.2019.6

1 Introduction and related work

Blockchains and, specifically, smart contract platforms such as Ethereum [2], provide signific-
ant opportunities for systems that transfer value in a trustless way. However, the inability
of blockchains to natively observe events in the outside world has limited this potential.
While miners can verify computations, such as required for validating a digital signature, as
part of the protocol they perform, this protocol generally does not have access to off-chain
information, such as weather data or even prices of blockchain-based assets in USD terms
that may be required for contracts such as flood insurance or financial contracts to perform
properly. Indeed, while new models of economic relationships have been seen to be facilitated
by smart contracts [20, 11], such smart contracts will likely often require access to off-chain
information. Already in the Ethereum white paper [2], the need for oracles, i.e. mechanisms
that can import external information on-chain, is discussed as necessary to overcome the
limitation of “value-blindness” of financial contracts towards crypto-assets. The limitations
on the types of applications that are possible on smart contract platforms that are imposed by
the difficulty in obtaining adequate oracles have since remained an active source of discussion
in the blockchain community [9, 13].
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Town Crier [21] and TLS Notary [6] allow for demonstrating on-chain that some informa-
tion has been published on a given TLS enabled website. However, this approach requires
that the website be trusted to honestly provide the required information; hence it is not
appropriate for all use cases. Furthermore, this style of oracle can be vulnerable to insider
attacks where a malicious employee of whatever entity controls the website can influence
the information that is used on-chain. ChainLink [14], which has acquired Town Crier [12],
proposes a model in which data drawn from multiple third party sources can be aggregated
and a reputation system is used to evaluate different sources.

A contrasting approach is taken by decentralized oracles, namely oracles that do not
depend on any trusted third party with special privileges. These systems typically involve
setting up some economic game. Then, the incentive structure of this game is designed so
that if participants follow their incentives, the oracle will produce correct answers.

The most successful example of a price oracle to date is likely that which is used by
Maker DAO [16] so that its stablecoin Dai can remain pegged to the US dollar. As Maker
DAO is based on a system of collateralization, and collateral is in ether, an oracle that can
give the price of ether in USD is required. Maker DAO uses a median of values provided
by trusted authorities such as leading exchanges, which are chosen (and can be replaced)
by MKR token holders. Thus, this oracle is decentralized in the sense that it is ultimately
responsive to token holders, albeit via a delegated system. It is worthwhile to note that, in
this case, MKR holders have a strong incentive to choose good oracles as the usefulness of
Dai as a stablecoin drives demand for MKR tokens, which must be burned to pay a fee when
recovering collateral. While this system has contributed to the impressive stability of Dai,
even in the recent cryptocurrency bear market, it is not clear how to generalize this idea to
price oracles not built around a widely-used stablecoin.

Of particular note are the existing oracles based on the concept of Schelling points [18].
Here, users submit answers for what the output of the oracle should be and are rewarded
if they are coherent with the majority and/or punished if they are incoherent. An early
proposal for a Schelling point based oracle was Truthcoin [19]. The underlying idea, is then
that users will submit true answers because they expect other users to also submit true
answers. An attempt to apply this idea to price oracles discussed in [10] is to have users
submit a value and then outputting the median submission. Then submitters are penalized
if their submission falls outside of the 25th to 75th percentile range of all submissions,
ideally encouraging coherence around the true result. As already discussed in [10], this first
version of a Schelling point based price oracle is potentially vulnerable to “micro-cheating”
as submitters risk little penalty if they provide small variations on the true value, as long as
this variation is not too extreme. Such “micro-cheating” may allow an attack to nudge the
output of the oracle and potentially affect the decision making of other submitters, leading
to more substantially deviations over time.

A notable example of a system that builds upon the ideas of Truthcoin is Augur [17].
Augur provides oracles for prediction markets by allowing holders of the Augur token REP
to dispute responses provided by default responders designated by the creator of the market.
Augur allows question askers to create markets where the answer can be binary, multiple
choice, or scalar (i.e. drawn from R). Notably, when creating a scalar prediction market, the
asker must currently specify a minimum and maximum value, as well as a precision, which
somewhat limits the flexibility of such markets. Moreover, note that Augur itself requires
knowledge of the price of the Augur token REP in order to determine if its fees should be
adjusted up or down in order to perform a “market cap nudge” so that buying a majority of
the REP to perform a 51% attack is financially not worthwhile relative to the amount of
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value at stake in Augur prediction markets. This would be a natural use case for Augur’s
own scalar oracle. However, for the moment, Augur has opted to use a delegated system
based on a collection of trusted third parties to determine the price of REP for these fee
adjustments and considers eventually using its scalar oracle for this purpose an “active area
of research” [5, 17].

Similar to Augur, Gnosis [4] offers a prediction market system based on oracles. Gnosis
is “oracle agnostic,” meaning that a Gnosis prediction market contract can reference any
oracle [8]. That said, the Gnosis team has developed oracles themselves which can be used
for their markets, such as their “ultimate oracle” mechanism [3]. Gnosis allows for prediction
markets based on scalar values such as prices, by proposing ultimately binary questions such
as whether the price will rise or fall [8].

Kleros [15] is a dispute resolution system on Ethereum based on the idea that parties
can enter into business relationships for which any financial transfers are held in escrow in
an Ethereum contract. Then, in case of dispute between the parties, a number of “jurors”
are randomly drawn via a token weighted system to rule on the case and are incentivized
via a Schelling point based mechanism. Already, such a system is a kind of oracle as it
brings knowledge of the honest party in these cases on-chain, and the Kleros white paper
[15] envisages asking jurors a wide variety of questions, so that Kleros can act as a general
oracle. At its current stage of development [1], Kleros allows its jurors to rule between a
finite set of predetermined options, particularly allowing binary choices. A notable feature of
Kleros, as the cases that are considered by Kleros may require a substantial per-juror effort
to be analyzed, is that it includes an appeal system so that juror effort is minimized even as
the security against potential attacks should scale with the number of jurors that would be
involved in a potential appeal.

Finally, ASTRAEA [7] proposes an oracle capable of providing a binary outputs and
provides a rigorous analysis of the security properties of their system. ASTRAEA makes use
of two groups – “voters” and “certifiers” – with different incentive structures that must agree
for the oracle to return a value. This departs somewhat from the structure of the Schelling
point based systems described above, but uses similar ideas.

2 Our contribution

We assume the existence of a decentralized, general purpose oracle that is capable of deciding
between binary propositions, namely it is capable of producing true answers to statements
about the external world such that the response is either “yes” or “no.” For example, one
could use Kleros [15], Augur [17], or ASTRAEA [7] to play this role, inheriting their respective
security models and guarantees. Then we propose a way to extend such a binary oracle
into an oracle capable of producing an element in a dense totally ordered set - namely a
totally ordered set such that if x and y are in the set, there exists some z in the set such
that x < z < y. In particular, as the set of real numbers R is an example of such a set,
our oracle can be used to determine the price of some asset in a way that can be used
on-chain. This oracle remains decentralized and general purpose. We establish a number of
desirable properties about this oracle, particularly that the ultimate precision of the output
dynamically adjusts to the greatest level of precision that is demanded by a user that is
ultimately determined to be honest. Hence, honest users can force very precise outcomes
(see Theorem 11) while limiting the ability of hostile users to delay the functioning of the
oracle or otherwise consume network resources (see Propositions 8 and 9).
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3 Proposal

We take S to be a dense totally ordered set (such as R).

3.1 Assumptions on the underlying binary oracle
We suppose we have access to a pre-existing oracle that can decide binary propositions about
the real-world. Namely, suppose we have two statements A and B, one of which corresponds
to reality. Then the binary oracle:

OB : {possible submissions to a (cryptoeconomic) game} → {A,B}

will return one of A or B in a way that can be computed on-chain, after a delay of t Ethereum
blocks for the (cryptoeconomic) game to be played, and in exchange for paying some fee A.

Furthermore, we allow for the possibility that the binary oracle has an appeal mechanism,
which may cause an additional time delay and additional fees. Namely, we suppose that
any actor can appeal a ruling of the binary oracle in exchange for paying an additional fee,
fA,i or fB,i, when one is in the ith appeal round and is staking on the claim that A or B is
true respectively. One might want to have fA,i 6= fB,i, for example, to require higher appeal
fees for the side that lost the previous round. If this fee is paid on behalf of one “side,” i.e.
is staked on the truth of A or B, the corresponding fee must be paid for the other side as
well (with the potential for multiple actors to pay this fee collectively). If one side pays an
appeal fee and not the other, the side that pays its fees is considered to be the result of
the binary oracle. If both sides pay their fees, the binary oracle rules again (with the idea
that more resources can be put towards this ruling, so ideally it is more likely to be correct).
Whatever fees that are paid on behalf of the side that is the ultimate output of the oracle
after all appeals are refunded, whereas fees paid on behalf of the other side are lost (with the
potential that they are at least partially redistributed to the fee payers of the winning side).

Appeals result in delaying the result of the oracle by an additional t Ethereum blocks per
appeal, up to some maximum number of appeal rounds. In Section 5 we will assume bounds
on the growth of appeal fees and consider resulting bounds on the attacker’s ability to delay
the result of the oracle in terms of her resources.

This proposal was originally developed as an extension to Kleros [15]. As a result, our
assumptions above on the structure of eventual appeals are modeled on the Kleros system.
The Kleros fee model [1] is designed so that there is an incentive to pay fees on behalf of
outcomes that one thinks are likely to ultimately to be chosen by the oracle because one can
win some of the fees staked by the losing side. Indeed, Kleros envisages the participation
of fee insurers whose economic model is to pay fees on behalf of cases they deem worthy,
reducing the practical inconvenience of requiring both sides of the case to pay fees.

However, the successive dispute rounds used in Augur [17] can also be thought of as
appeals satisfying this structure (taking two consecutive dispute rounds together and thinking
of them as a single appeal), with their “forking market” representing a decision that has
reached the maximum number of appeals. Moreover, our results should be adaptable to
binary oracles with differing appeal systems. Indeed, one can recover the situation of a
binary oracle without an appeal mechanism by just considering that the maximum number
of appeals is zero. Hence our results apply equally to such systems.

3.2 Discussion of actors and attack model
The principal actors of our proposal, beyond whatever actors participate in the underlying
binary oracle that is used, are respondents, who submit information about v ∈ S, the value
that the oracle is attempting to determine. Specifically each respondent submits an interval in
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which they believe that v belongs. Respondents pay a deposit D which they risk losing if the
information provided is ultimately judged to be incorrect, see Section 4. While respondents
may obtain a reward if the information they provide is judged to be correct, we will see that
they are not on average compensated by our system. Hence, we expect that the primary
motivation of respondents is some external interest in the result the oracle produces. We
will see, under some idealized assumptions about the performance of the OB, that it is
sufficient for there to be a single honest respondent for our oracle to produce honest results,
see Theorem 11. For an oracle that is part of a decentralized application with wide use,
participation of respondents in these conditions is not an unrealistic assumption. However,
an investigation of additional ways to incentivize the participation of respondents may be a
subject for future work.

In this work, we will consider attacks from attackers that have the capacities of respondents.
Namely, we will analyze attacks that submit malicious responses or call appeals in a hostile
manner. Of course, the quality of the results of our real-valued oracle depends on the quality
of the results of the underlying binary oracle. As we allow for the possibility of using any
binary oracle, we do not directly consider an attack model where it is possible to corrupt
the results of the binary oracle. However, in our results, it will be clearly indicated when
one must make hypotheses about the accuracy of OB. Furthermore, we do not consider
attacks on the underlying infrastructure of the smart contract platform, such as 51% attacks
or network denial-of-service attacks on Ethereum.

3.3 Proposed oracle algorithm
The procedure we propose to approximate the true value of some quantity is based on a sort
of modified binary search of the responses, where, rather than split the list of responses at
the median when performing a comparison, we detect incoherences that prevent a consensus
answer from being accepted and then take a comparison with respect to the median of the
list of these incoherences. We are performing these operations on elements in S, which a
priori is not closed under averaging, so the normal median may not be defined. However, if
we need to take the median of a set D with an even number of elements, namely in the case
that requires computing an average, as S is a dense totally ordered set, we can find some
(not necessarily unique) element z of S such that half of the elements of D are on either side
of z. We suppose that for a given S one has some way of efficiently choosing such a z, and
we consider it to be a median of D. In the remainder of this paper, in the context of generic
dense totally ordered sets, we use the words median and average in this sense. In the case
S = R, we take the normal median.

In detail, we consider the following:

I Algorithm 1. Input: Each respondent USRi submits two distinct values - a lower bound
li ∈ S and an upper bound ui ∈ S, li < ui, giving an interval (li, ui) in which this respondent
believes the true value of the question is located.

Sort the lower bound responses into a list L and the upper bound responses into a list U ,
where in each case identical values are considered as single elements.
Compute the lists

L0 = {li ∈ L : ∃uj ∈ U , uj ≤ li, 6 ∃ lk ∈ [uj , li) ∩ L}

and

U0 = {ui ∈ U : ∃lj ∈ L, lj ≥ ui, 6 ∃ uk ∈ (ui, lj ] ∩ U} .
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Compute

C0 = {median(li, uj) : li ∈ L0, uj ∈ U0, uj ≤ li, 6 ∃ lk ∈ [uj , li) ∩ L, 6 ∃ uk ∈ (uj , li] ∩ U}

(So, if we considered L and U in the same line, essentially L0 would consist of lower
bounds which have an upper bound to their immediate left and U0 would consist of upper
bounds that have a lower bound to their immediate right. Then C0 consists of the midpoints
between each of these pairs.)
If C0 6= ∅

For each z ∈ C0 perform the following in parallel:
∗ Ask the binary oracle OB if

desired value ≤ z

or

desired value > z.

∗ Allow appeals of their decision as necessary following the fee structure described in
Section 3.1, where here the two sides are as follows:

desired value ≤ z

or

desired value > z

· If one side pays its required fees but not the other, OB is considered to rule in
favor of the side that paid its fees.

· If neither side pays its fees, the previous ruling stands.
Take C1 = C0.
While C1 6= ∅
∗ If #C1 is odd, calculate m = median(C1) ∈ C1. If #C1 is even, choose one of the two
middle-most values of C1 as m in some predictable way (such as by always taking
the value on the left).

∗ Eliminate all li and ui that are on the wrong side of what OB decided with respect
to m (taking into account the final outcome after any appeals) from L and U .

∗ Add m to L if OB has ruled that the true value is higher than m, and add m to U
otherwise.

∗ Recalculate L0 and U0 based on the updated L and U .
∗ (Re)calculate C1 as

{median(li, uj) : li ∈ L0, uj ∈ U0, uj ≤ li, 6 ∃ lk ∈ [uj , li) ∩ L, 6 ∃ uk ∈ (uj , li] ∩ U} .

Output the average of the largest remaining element of L and the smallest remaining element
of U . Payments are made to respondents according to a structure that will be described in
Section 4.

The respondent USRi is ruled incorrect and loses his deposit if the final output of
Algorithm 1, voutput 6∈ (li, ui). See Section 4 for details on the payment made to a respondent
USRi for whom voutput ∈ (li, ui).
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Figure 1 An example of Algorithm 1. Six respondents USRi each submit (li, ui). The elements
of C0 are marked by the short, straight blue lines. The binary oracle OB is called to rule on each
element of C0 in parallel, and then these results are translated into the output via two rounds of the
while loop. The three lines show the state of L ∪ U before the first round, between the two rounds,
and after the second round respectively. The execution shown corresponds to OB ruling that the
true value v is such that v > m1 in round one and v > m2 in round two.

We will choose the respondent deposits to be large enough so that the deposits of
respondents who are ruled incorrect is sufficient to cover the fees required for the initial
ruling (i.e. excluding potential appeals) of each call of OB required by the for loop, namely
at every point in C0. This will require that the deposit D from each respondent be greater
than or equal to A, the total amount of fees required by a single, non-appealed call of OB . In
contrast, the fees for any appeals are submitted independently from the respondent deposits
(depending on the structure of the cryptoeconomic game used by OB , this will typically be
done by parties interested in winning the stake of the other side as discussed in Section 3.1).

I Proposition 1. Enough fees are paid by respondents who are ultimately ruled incorrect to
cover the initial round of all required calls to the binary oracle. Specifically,

# submissions ruled incoherent ≥ #C0 = # rulings required

Proof. As each respondent pays a deposit that includes A, the cost of a call to OB before
appeals, there is A · (# submissions ruled incoherent) available to cover the fees of the total
initial round of binary oracle calls. By construction, there is a ruling with respect to each
point in C0. So it suffices to prove the first inequality.

Take c ∈ C0 such that c ≥ v, where v is the ultimate output of the oracle. For each such c
there are some li ∈ L0, uj ∈ U0 such that uj ≤ c ≤ li and there is no lk ∈ (uj , li) ∩ L. Then
li was the lower bound of an incoherent submission.

We claim that this process produces a distinct li for each c ∈ C0. Indeed, if c1, c2 ∈ C0
are as above with uj,1 ≤ c1 ≤ li,1 and uj,2 ≤ c2 ≤ li,2 but li,1 = li,2, then either

uj,1 ∈ (uj,2, li,2] which contradicts the definition of C0
uj,2 ∈ (uj,1, li,1] which again contradicts the definition of C0 or
uj,1 = uj,2 which, as li,1 = li,2, implies that c1 = c2.

Similarly, for each element of C0 less than v there corresponds some uj ∈ U0 that is the
upper bound of an incoherent submission. J
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We see that all of the rulings of the binary oracle that are needed to evaluate the while
loop were, in fact, decided.

I Proposition 2. During the while loop, each C1 that is computed is a subset of C0. Hence,
for each m computed during the loop, OB will have ruled either

desired value ≤ m or
desired value > m

Proof. The sets L and U are only modified during the while loop. There, if OB rules that
desired value ≤ m, all elements greater than or equal to m are eliminated from L and U ,
and m is added to U . Due to the local way that C1 is defined, as the elements of L and U
less than m remain unchanged, the only way a new element could be added to C1 is if there
existed some li ∈ L0, m ≤ li such that median(li,m) ∈ C1. However, when computing C1, m
is a strict upper bound for L, so there will not exist any such li. A similar argument applies
if OB had ruled that desired value > m. J

I Remark 3. Note that is possible that OB ’s rulings on different points in C0 will be incoherent;
e.g. one call of OB will rule that v ≤ m1 and another call of OB will rule that v > m2 even if
m2 ≥ m1. This does not prevent the algorithm from halting as the while loop gives priority
to the decisions required along the path of a binary search.

I Remark 4. At the expense of additional gas, after each appeal round in algorithm 1, one
can test whether the required OB calls for the while loop to terminate have been finalized,
i.e. have not been appealed. Depending on how underlying binary oracle it structured, it
may be necessary to resolve all of the appealed calls of OB for an appropriate payment of its
internal incentives, however this need not unnecessarily delay the finalization of the result of
Algorithm 1.

A priori, it is conceivable that at some point of Algorithm 1, L and U become empty and
the last step of the algorithm fails. We see that this cannot, in fact, occur.

I Proposition 5. Suppose that there is at least one submission (l∗, u∗) to the oracle. Then
if Algorithm 1 halts, it returns a value in S.

Proof. We will see that neither L nor U becomes the empty set. Then, in particular, the
last step of Algorithm 1 is well-defined because there is a largest remaining element in L
and a smallest remaining element of U .

We argue inductively that l = min {L ∪ U} is in L after each round of the while loop.
Before the first round, this is clearly true, as we have assumed there is at least one submission,
and for each submitted element of U there is a corresponding, smaller element of L. In each
round of the while loop, after the appropriate value of m is calculated, either
OB rules that desired value > m or
OB rules that desired value ≤ m.

In the first case, m is added to L, and it also becomes min {L ∪ U}. In the second case,
min {L ∪ U} is left unchanged, and hence in L. Hence L never becomes the empty set. A
similar argument shows U 6= ∅. J

Moreover, thinking of C1 as a set of inconsistencies that prevents the oracle from finding an
answer that is a consensus among the different responses, we see that the number of these
inconsistencies is reduced by half after each round of the while loop.

I Lemma 6. Each round of the while loop reduces the length of C1 by at least half.
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Proof. Consider a given round of the while loop. Denote n = #C1 in this round. Note that
the addition of m to L or U after the call to OB cannot create any new elements of C1, as m
becomes either the smallest element of L or the largest element of U .

If n is odd, then n−1
2 elements in C1 are on either side of m. Hence at least this many

elements are eliminated, whichever way OB rules. Moreover, m itself is given as the median
of an upper bound ui to the left and a lower bound lj to the right. Depending on the ruling
of OB , either ui or lj is eliminated. So m is also removed from C1.

If n = 2k is even, then one of the two most central elements of C1 is used as m. Thus, on
one side of m there will be k − 1 elements of C1 and on the other k. Hence there are at least
k elements that are eliminated by the choice of OB, including m itself which again is also
removed from C1. J

Lemma 6 has the immediate consequence that:

I Corollary 7. Algorithm 1 halts.

In Section 6, we will consider more precise estimates on the complexity of Algorithm 1.

4 Incentivizing respondents to submit short intervals

In this section we will describe what payouts are made to respondents based on the results
of Algorithm 1. For the moment, as discussed in Section 3.2, we imagine that there is no
up-front cost paid by the party that sets up whatever application that requires the oracle of
Algorithm 1. Indeed, the cost of any initial round (excluding appeals) calls to OB that are
required in the execution of Algorithm 1 is paid by the respondents. While appeal costs may
be covered by other parties (such as the fee insurers imagined by Kleros [1]), one would expect
that most appeal fees would also be covered by respondents. Then, while some respondents
may make gains from paying fees for the position that is ultimately coherent and winning
stake from respondents who lose their deposits, the amount that must be paid to OB will
collectively mostly come from the respondents. Thus, in terms of the internal incentives of
Algorithm 1, the respondents are playing a negative sum game, and in particular are not,
on average, compensated for their efforts. In the event that there are many parties with an
interest in the result of the oracle, it is nonetheless not unreasonable to expect submissions
from respondents in this setting. Effective models for having an “Asker” that pays a fee
which can cover compensation for respondents is a potential subject for future work.

Recall, a respondent places a deposit D which he loses if the interval he submits (li, ui)
does not contain the output of Algorithm 1. A priori a user might then want to submit a
very large interval such as (−∞,∞) in order to be guaranteed to be correct. (Note again,
parties with an external financial interest in the result of the oracle may nonetheless want an
incentive to submit useful estimates). We will design the redistribution mechanism so that
respondents have an incentive to submit more precise estimates. To do this we will weight
their payouts by an inverse exponential of the length of the submitted intervals.

Consider a respondent USRi who submits an interval Ii = (li, ui). If S is a metric space,
such as R, one can take length(Ii) = ui − li (or more generally as the distance from li to ui).
Then, if the ultimate response to the oracle is not in Ii, the user loses his deposit D. If the
response is in Ii, the user receives

# incorrect responses ·D − cost of first round OB fees∑
j such that USRj correct α

−length(Ij) · α−length(Ii), (1)

where α > 1 is some fixed constant. Note that this quantity is positive by Proposition 1. If
S is not a metric space, then the payoff can be split equally between correct respondents.
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As such, the sum of the lost deposits from the incorrect users is equal to the sum of the
payouts to the correct respondents plus the amount required to pay the fees required by
OB in the first round of each call. Notice that if a respondent submits an infinite length
interval such as Ii = (−∞,∞), then α−length(Ii) = 0, for payoffs given by formula 1. So the
respondent obtains no reward but suffers no penalty. On the hand, respondents who submit
more precise intervals obtain higher rewards.

In Section 8 we will analyze respondent behavior under the incentives given by formula
1. We will show that, under hypotheses on α and certain heuristic assumptions about
the behavior of OB, that it is also not profitable for respondents to submit intervals that
are smaller than the precision with which a respondent could reasonably know the desired
value. In general, it would be an interesting subject for future experiments to determine
how tweaking the weighting of these payoffs, particularly the constant α, would change user
behavior to encourage them to submit precise answers for high payoffs, accepting the risk
that a very precise answer risks being ruled incorrect even if answered in good faith.

5 Bounds on time griefing in terms of attacker resources

In this section, we estimate an attacker’s ability to delay the oracle as a function of her
resources. First note,

I Proposition 8. If all intervals submitted by the respondents are correct, that is to say the
true value v ∈ Ii for all i, then no calls to OB are required.

Proof. If v ∈ Ii = (li, ui) for all i, then li < v for all v. Similarly v < uj for all j. Hence
#C0 = ∅ and no calls to OB are made. J

Now we consider situations where we have an attacker. All of the calls of OB of the for
loop are performed in parallel, however an attacker can attempt to delay the result of the
oracle by appealing one or more of these decisions. As discussed in Section 3.1, each appeal
round of OB takes t time and all other operations take negligible time. Again, we take that
the fees for an initial round ruling of OB to be A.

Suppose that appeal fees are such that

min


i∑

j=1
fA,j ,

i∑
j=1

fB,j

 ≥ K ·A · 2i,
for all i, where K > 0 is a constant that depends only on what algorithm is used for the
underlying binary oracle. This is particularly the case if one uses either Kleros [15] or Augur
[17] as the binary oracle.1 Denote by R the attacker’s financial resources.

I Proposition 9. Suppose that all responses submitted other than the attacker’s are ruled
correct, namely the output value is in the submitted interval, and suppose that fA,i and fB,i
are as above. Then, the maximum number of appeals required is OA(log2(R)), and hence the
maximum amount of time an attacker can delay a result is OA(t · log2(R)), where the implicit
constants are allowed to depend on A.

1 This is explicitly the case for Kleros [1]. In Augur [17], applied to a binary decision between A and B,
the dispute bond required to dispute a pending outcome of B is 2S(B, n)−S(A, n) ≥ S(B, n) ≥ S(A, n),
where S(∗, n) denotes the total amount of REP staked on choice ∗ prior to the nth round. Hence,
fA,i ≥

∑i−1
j=1 fA,j ∀i. Then the bound follows from a standard induction argument.
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Proof. If the attacker repeatedly appeals a given decision, then the appeal fees through the
mth appeal are at least K · A · 2m. Then, even if the attacker uses all of her resources in
appealing a single decision, we have

K ·A · 2m ≤ money spent by Attacker ≤ R⇒ m ≤ log2

(
R

K ·A

)
= OA(log2 R).

(Note that as OB is assumed to be always correct, the attacker will ultimately lose her appeal
so she these resources will, in fact, be consumed.) J

6 Running time and number of calls to binary oracle

In Section 5, we examined an attacker’s ability to delay the execution of the oracle by forcing
additional appeals. In this section, we will examine the effect of one or more incoherent
respondents on the running times of the for and while loops. This is particularly relevant in
evaluating the gas costs of Algorithm 1.

Recall, the cost of submitting an incorrect response (lattack, uattack) is D, via a lost
deposit when it is eventually determined that the ultimate answer to the oracle is not in
the submitted interval. Once again, we denote by R the collective financial resources of
respondents who submit intervals that are ultimately ruled to be incoherent, which without
loss of generality we can assume to all be controlled by a single attacker.

I Proposition 10. Suppose that all responses submitted other than the attackers are ruled
correct, namely the output value is in each of these intervals. Then there are at most R

D

many calls to OB that must be resolved during the for loop. Consequently, the while loop
requires at most max {log2 (#C0) + 1, 0} ≤ max

{
log2

(
R
D

)
+ 1, 0

}
rounds.

Proof. The attacker can only place at most R
D incorrect solutions. So, by Proposition 1,

# rulings required = #C0 ≤ R/D.

Then, by Lemma 6, it is sufficient to have k many rounds of the while loop such that( 1
2
)k #C0 ≤

( 1
2
)k R

D < 1. Hence, it is sufficient to have k = max
{

log2
(
R
D

)
+ 1, 0

}
rounds. J

Then, if Algorithm 1 is implemented in such a way that L and U are pre-sorted (by
submitters including the indices of their entry in the lists), the total on-chain running time of
Algorithm 1 is O

(
#submissions ·

(
1 + max

{
log2

(
R
D

)
+ 1, 0

}))
, plus at most R

D calls to OB .

7 User-calibrated precision

In this section, under idealized assumptions about the results produced by OB , we study the
precision of the output of Algorithm 1. Particularly, we see that it depends on the lengths of
the intervals submitted by the respondents.

I Theorem 11. Suppose that the true value that Algorithm 1 is trying to determine is v,
and that the underlying binary oracle OB is always correct in determining whether a value is
greater or less than v. Suppose that some respondent submits the interval I = (l∗0, u∗0) such
that v ∈ I. Furthermore, suppose that this respondent is willing to pay any required appeal
fees in at most 2 max {log2 (#C0) + 1, 0} specifically chosen calls of OB on behalf of claims
that would be implied by v ∈ I. Then the response output by the oracle is in I.
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Proof. Consider the calls of OB with respect to the values mi that are considered through
the various rounds of the while loop. Suppose for the moment that the respondent pays any
appeal fees required when mi 6∈ I for rulings consistent with v ∈ I. Then, suppose we have
passed through the while loop k times. We will iteratively define an interval Ik such that

ultimate response ∈ Ik ⊆ I.

We define these intervals as either of the form Ik = (l∗k, u∗k) or the form Ik = (l∗k, u∗k]. We
take I0 = I = (l∗0, u∗0) and then for k > 0:

Ik =



(l∗k−1,mk] : if OB rules that v ≤ mk, mk < u∗k−1

Ik−1 : if OB rules v ≤ mk, mk ≥ u∗k−1

(mk, u
∗
k−1) : if OB rules that v > mk, mk ≥ l∗k−1, I∗k−1 = (l∗k−1, u

∗
k−1)

(mk, u
∗
k−1] : if OB rules that v > mk, mk ≥ l∗k−1, I∗k−1 = (l∗k−1, u

∗
k−1]

Ik−1 : if OB rules that v > mk, mk ≤ l∗k−1

We note that in the first case, we must, in fact, have l∗k−1 ≤ mk, so Ik is well-defined. If l∗k−1
was a previous round mi, then it must be a lower bound on L ∪ U in the kth round. Hence
l∗k−1 ≤ mk. Otherwise, if mk < l∗k−1 = l∗0, this dispute is one in which we have assumed
that the respondent is willing to pay appeal fees on behalf of mk < l∗0 < v. However, this
is incoherent with OB ruling that v ≤ mk by our assumptions on the correctness of OB.
Similarly, we see Ik is, in fact, a non-empty interval in all cases, whose endpoints consist of
elements of L and U in the kth round. Moreover, each Ik ⊆ Ik−1 ⊆ I by construction.

As the algorithm halts by Corollary 7, eventually, after w rounds of the while loop, all
lower bounds in L will be (strictly) less than all upper bounds in U with output satisfying

lj < ultimate response < ui, for all i, j.

In particular, the response is (strictly) between l∗w and u∗w, so

ultimate response ∈ Iw ⊆ I.

Finally, we show that there is at most one value in C0 which can arise as an mk ≤ l∗0
for which the respondent would need to pay appeal fees in the kth round of the while loop.
Instead suppose that ck,1, ck,2 ∈ C0 with ck,1, ck,2 ≤ l∗0 that could each arise as mk in different
executions. Suppose without loss of generality ck,1 ≤ ck,2. Take cj to be the last common
ancestor of these values in the binary search tree, then ck,1 ≤ cj ≤ ck,2 ≤ l∗0. As ck,1 and
ck,2 can arise as mk, cj can arise as mj in its round. Then as the respondent is assumed to
pay appeal fees for calls regarding cj ≤ l∗0 < v, OB must rule that v > cj . Hence ck,1 cannot
arise as a value of mk. By Proposition 10 and repeating this argument for values mk > u∗0,
the respondent need only pay appeal fees in at most 2 max {log2 (#C0) + 1, 0} calls. J

A consequence of Theorem 11 is that if users require that the oracle output very precise
values, they need only submit very precise interval estimates as respondents in which they
are nonetheless confident that the true answer lies. Another consequence of Theorem 11, is
that, again under idealized assumptions on OB , honest respondents will never be penalized.

I Corollary 12. Suppose that the true value that Algorithm 1 is trying to determine is v, and
that OB is always correct in determining whether a value is greater or less than v. Suppose
that a respondent submits the interval I = (l∗0, u∗0) such that v ∈ I. Furthermore, suppose
that this respondent is willing to pay all required appeal fees in 2 max {log2 (#C0) + 1, 0}
specifically chosen calls of OB on behalf of claims that would be implied by v ∈ I. Then the
user will not lose any appeal fees or deposits.
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Proof. By Theorem 11, the eventual value output by the procedure will be in I, hence the
respondent will not lose his deposit. As discussed in the proof of Theorem 11, in the cases in
which the respondent is assumed to contribute appeal fees (if necessary), he takes positions
consistent with a true value of v and hence is always on the winning side. J

8 Equilibria in the respondent game

A key challenge of price oracles is that it is often unreasonable to speak about the price
of an asset as being defined beyond a certain precision. An asset can be traded in many
marketplaces simultaneously and while one might average together some weighted version of
the prices in these different marketplaces, this will inevitably only give an approximation of
the price. As a result, one might argue that there is some interval (v − ε, v + ε) such that
any element of this interval could be argued to be the price. Considering the transcendental
nature of R, one can expect this phenomenon to hold for other R or S valued oracles as well.

In previous sections, we have sometimes taken the idealized hypothesis that OB rules
“honestly” with respect to whether a given x is higher or lower than some single “true value.”
This might be a realistic (if optimistic) assumption when x 6∈ (v − ε, v + ε). However, when
presented with x ∈ (v − ε, v + ε), it is more realistic to consider the choice made by OB as
being inevitably random, even when OB is “honest.”

In this section, we will consider a simplified model where the output of Algorithm 1 is
distributed uniformly over (v−ε, v+ε), and we will analyze respondent payoffs and incentives.
Similar analysis using other distributions may be a subject for future work; however, already
this simple model is not completely unreasonable. Heuristically, imagine that OB responds
“yes” and “no” with equal probability if posed the question “is x greater than the true value”
for any x ∈ (v − ε, v + ε). Further, suppose respondents placed intervals in such a way that
C0 ∩ (v − ε, v + ε) consists of equally spaced points. Then, as the number of such points
increases, the output’s distribution becomes well approximated as uniform on (v − ε, v + ε).

In this model, we examine conditions under which there is no economic incentive in terms
of the payouts to coherent respondents for them to submit intervals smaller than 2ε. Of
course, respondents may have some external interest in the output of Algorithm 1 such that
they are incentivized to submit smaller intervals.

I Proposition 13. Consider a model as described above, where the output value of Algorithm
1 is drawn uniformly from (v− ε, v+ ε) and payouts to correct respondents are given according
to formula 1. There is an equilibrium where all respondents submit responses containing
(v− ε, v+ ε); hence the game played by the respondents is Bayesian-Nash incentive-compatible.
Moreover, suppose α2ε < e ≈ 2.718 and suppose that all respondents other than USRi submit
intervals that either include or do not intersect (v − ε, v + ε). Then the respondent USRi
maximizes his expected payoff by submitting the interval Ii = (v − ε, v + ε).

Proof. The first claim is clear from the fact that rewards for respondents are paid from the
lost deposits of other respondents. Now assume α2ε < e. Suppose that a respondent USRi
submits an interval Ii such that length(Ii) = δi and Ii ⊆ (v − ε, v + ε). Then, he has a δi

2ε
chance of being ruled correct and a 1− δi

2ε chance of being ruled incorrect. Note that, as we
assume that all other respondents submit intervals that either include or do not intersect
(v − ε, v + ε), the payoff for a response depends only on δi and whether voutput ∈ Ii. Hence,

E[submit Ii] = # incorrect responses ·D − cost of first round OB fees
α−δi +

∑
j such that USRj correct,j 6=i α

−length(Ij ) ·α−δi · δi2ε −D ·
(

1− δi
2ε

)
.
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However, the payoff for the honest strategy of submitting Ii = (v − ε, v + ε) is given by

E[honest] = # incorrect responses ·D − cost of first round OB fees
α−2ε +

∑
j such that USRj correct,j 6=i α

−length(Ij) · α−2ε.

Denote

A =
∑

j such that USRj correct,j 6=i
α−length(Ij) ≥ 0.

Then if we have

1
α−δi +A

· α−δi · δi2ε −
1

α−2ε +A
· α−2ε ≤ 0

⇔
(
1 +Aα2ε) · δi2ε − (1 +Aαδi) ≤ 0,

that is sufficient to see that the honest strategy yields a higher expected payout.
However, δi

2ε ∈ [0, 1], so we define

f(x) = xAα2ε + x−Aα2εx − 1

for x ∈ [0, 1]. Then

f ′(x) = Aα2ε + 1−Aα2εx · ln
(
α2ε) ≥ Aα2ε + 1−Aα2ε · ln

(
α2ε) > 0

by the assumption that α2ε < e. Then as f(1) = 0, one has that f(x) ≤ 0 for all x ∈ [0, 1]. J

9 Conclusion

We have presented a completely crowd-sourced oracle for values in smart contracts from
dense totally ordered sets that we expect to be particularly applicable as a price oracle. This
proposal takes as an ingredient an oracle that can make binary decisions, for which one could
use, in particular, the existing systems of Kleros, Augur, or ASTRAEA, then extending
the influx of knowledge about the real world that they provide to a wider setting. The
number of times the binary oracle must be called is limited to a reasonable bound in terms
of the resources of parties who propose incoherent answers, not calling the system at all if all
respondents submit mutually consistent answers. Hence the time required to compute this
oracle should be suitable for many applications. Furthermore, the precision with which our
proposed oracle returns its final answer is tuned to the precision of the most precise correct
respondent so that the system can be as precise as its users require it to be.
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Abstract
Since the invention of Bitcoin one decade ago, numerous cryptocurrencies have sprung into existence.
Among these, proof-of-work is the most common mechanism for achieving consensus, whilst a
number of coins have adopted “ASIC-resistance” as a desirable property, claiming to be more
“egalitarian,” where egalitarianism refers to the power of each coin to participate in the creation
of new coins. While proof-of-work consensus dominates the space, several new cryptocurrencies
employ alternative consensus, such as proof-of-stake in which block minting opportunities are based
on monetary ownership. A core criticism of proof-of-stake revolves around it being less egalitarian
by making the rich richer, as opposed to proof-of-work in which everyone can contribute equally
according to their computational power. In this paper, we give the first quantitative definition
of a cryptocurrency’s egalitarianism. Based on our definition, we measure the egalitarianism of
popular cryptocurrencies that (may or may not) employ ASIC-resistance, among them Bitcoin,
Ethereum, Litecoin, and Monero. Our simulations show, as expected, that ASIC-resistance increases
a cryptocurrency’s egalitarianism. We also measure the egalitarianism of a stake-based protocol,
Ouroboros, and a hybrid proof-of-stake/proof-of-work cryptocurrency, Decred. We show that stake-
based cryptocurrencies, under correctly selected parameters, can be perfectly egalitarian, perhaps
contradicting folklore belief.
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1 Introduction

In 2008, Satoshi Nakamoto proposed Bitcoin [24], the first and most successful cryptocurrency
to date. Bitcoin introduced a cryptographic consensus protocol in which transactions are
organized into blocks which are put in a globally agreed sequence, the blockchain, despite
the presence of adversaries and without the need of any setup or identity system. Since its
inception, a plethora of alternative cryptocurrencies, or “altcoins,” have sprung into existence,
each claiming its own features.

A major thread of research has focused on the mandates of block generation, specifically
the mechanism of identifying the party responsible for producing a new block at any point.
Bitcoin, as well as the majority of altcoins, employs proof-of-work [11], where block generation
is called mining and blocks are produced by miners who expend computational power to
solve cryptographic puzzles. On the other hand, the most prominent alternative mechanism is
proof-of-stake. In proof-of-stake, block generation is called minting and blocks are produced
by minters who “stake” their coins, i.e., users who own a set of coins and use them to
participate in the consensus protocol. Intuitively, in both cases a leader is drawn at regular
intervals at random from the block generators population, with a probability of selection
proportional to their computational power or stake respectively.

Block generators are incentivized to produce blocks by receiving a reward for each block
they successfully produce and which is subsequently adopted in the resulting blockchain. In
many cryptocurrencies, the rewards serve a dual purpose: incentivise the the miners/minters
but also create and distribute the underlying cryptocurrency to the system’s maintainers.
Taking this into account, in this paper, we consider the block generators as investors and
focus on the comparison of the expected returns of investors with different purchasing power.
The central economic property which arises is that of cryptocurrency egalitarianism. In an
ideal world, investing a certain amount of capital to produce blocks should result in rewards
proportional to that capital; that is, both a poor investor and a rich investor should receive
returns in proportion to their investment in expectation. In this point of view, wealthy
investors should not be rewarded with disproportionate rewards and everybody should have
equal opportunity to both participate and earn rewards. As we will see, this is far from true
with most cryptocurrencies today.

Until now, the term egalitarianism has been left undefined, although several cryptocurren-
cies claim to be more egalitarian than others [30] [23]. However, lacking a quantifiable metric,
the question of whether some cryptocurrencies are more egalitarian than others remains ill
posed. Our paper aims at putting forth the first concrete definition of egalitarianism, in a way
which is generic and can be applied to any cryptocurrency. Our definition provides a metric,
which can be practically measured and used to compare different cryptocurrencies. Using our
model, we measure the egalitarianism of four indicative proof-of-work–based cryptocurrencies:
Bitcoin, Litecoin [21], Ethereum [6, 31], and Monero [30]. Bitcoin, being the first and most
successful cryptocurrency to date, was chosen as the baseline of comparison. Ethereum
is the most promising altcoin and is currently the largest decentralized cryptocurrency by
market cap after Bitcoin2. Litecoin and Monero, although not next by market cap, make
claims [30, 23] of increased egalitarianism because of their design. We assess their claims and
find them in agreement with our data, thus presenting for the first time economic comparisons
which quantify them precisely. On the pure proof-of-stake side, as will soon become clear,

2 All references to market cap in this paper are made according to https://coinmarketcap.com [January
2019].

https://coinmarketcap.com
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egalitarian behavior is similar across all coins independently of externalities such as hardware
characteristics. Therefore, it suffices to perform a case study of an indicative proof-of-stake
protocol. We study the case of pure proof-of-stake, applied on a protocol consistent with
Ouroboros [19], as well as a hybrid proof-of-work/proof-of-stake cryptocurrency, Decred [9].
We find that, in an open market, pure proof-of-stake coins can be perfectly egalitarian, con-
trary to their proof-of-work counterparts. However, we note that variations of proof-of-stake,
such as “delegated proof-of-stake,” may not be perfectly egalitarian, since the delegates, i.e.,
the leaders of the stake pools which are formed, typically earn extra profits for managing the
stake pools [5].

Our Contributions and Roadmap. This work provides a quantitative evaluation of cryp-
tocurrency egalitarianism. To the best of our knowledge this is the first work to provide a
treatment of this property and acts as the foundation for comparing cryptocurrency fairness
when it comes to reward distribution. Specifically, the contributions of our research are
summarized as follows:

1. We define an exact measure of cryptocurrency egalitarianism; to do this, we first define
the egalitarian curve of a cryptocurrency from which we extract the measure.

2. We measure and compare the egalitarian curve and egalitarianism of four indicative
proof-of-work cryptocurrencies (Bitcoin, Ethereum, Litecoin, Monero), one representative
proof-of-stake protocol (Ouroboros), and a hybrid cryptocurrency (Decred), using current
market data.

3. We show that proof-of-stake, when correctly parameterized, is, perhaps unexpectedly,
perfectly egalitarian.

The rest of this paper is structured as follows. We begin by reviewing related work and
preliminaries in Sections 2 and 3. Next, we put forth our definition for the egalitarian curve
and egalitarianism of a cryptocurrency and motivate its intuition in Section 4. In Section 5
we present empirical data for several cryptocurrencies of interest and evaluate them under
our model, in order to deduce whether previous intuitive claims are indeed correct. Finally,
the conclusions of our research are drawn in Section 6.

2 Related work

The macro and microeconomics of blockchain design have been studied from several perspect-
ives but remain an active area of research with a number of open questions. Incentives for
block generation according to the honest protocol have been explored for both proof-of-work
and proof-of-stake.

Proof-of-work protocols such as Bitcoin were formalized in the Bitcoin Backbone [14, 15]
papers and follow-up works [25]. The seminal work of Selfish Mining [12, 28] showed that
the honest behavior is not incentive-compatible in Bitcoin, but the protocol can be modified
to behave that way. However, in restricted models, Bitcoin can be shown to be incentive-
compatible [18]. Proof-of-stake protocols such as Ouroboros [19] can be designed from the
ground up to be incentive-compatible. The question of how to incentivize parties to conduct
pool formation into the desired number of pools, or groups of minters, was studied in [5].

The above works study the incentives of blockchain systems from the designer’s point of
view so that participants do not deviate from the prescribed protocol. A related question is
how fair the protocol is to participants themselves, and in particular to honest participants.
The Backbone and Selfish Mining works include attacks in which an adversary can strategically
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harm chain quality, causing the number of blocks and, in turn, the respective rewards, to be
disproportionate to their contributed computational power, thereby harming fairness against
honest participants. Fruitchains [26] proposes a protocol which solves this problem. In these
works, handing out rewards in exact proportion to computational power is considered “fair.”

Egalitarianism, in the way considered in the paper, has been studied in proof-of-work
systems from a technological point of view with respect to memory-hard functions in [2, 3].
However, the question of whether computational power grows proportionally to capital
invested, i.e., whether larger wealth results in more than proportional rewards, has not been
previously studied. Therefore, our work aims at filling this gap by studying the effects of
economies of scale when applied to cryptocurrency generation.

Equitability of cryptocurrencies. Fanti et al. analyze economic blockchain fairness in [13],
where they define equitability. They study the evolution of a system after a series of rounds,
putting forth the property that stake ownership remains in proportion before and after
rewards have been awarded. By studying the behaviour of the returns’ variance under
the randomness of executions, they show that the distribution of capital follows a Pólya
process. Our work augments their results by quantifying the expectation of rewards and
then studying the variance under the randomness of initial capital allocation. In our work,
we show that computational power is not proportional to the invested capital, and hence
the analogy between proof-of-work computational power and proof-of-stake capital breaks
down, and a more detailed study is needed. Additionally, we remark that proof-of-work
miners also reinvest their proceeds in the mining operation, albeit slowly, as proof-of-stake
minters do. For example, empirical data show that large-scale miners pay for electricity using
their proceeds [17]. Hence, both mining and minting follow Pólya processes as modelled by
their paper. Regardless, egalitarianism and equitability are orthogonal. A cryptocurrency
can be perfectly egalitarian and poorly equitable and vice versa. It is possible to obtain a
cryptocurrency both egalitarian and equitable by adopting correctly parameterized proof-of-
stake under a geometric reward function.

3 Preliminaries

Before studying the egalitarianism of different cryptocurrency consensus mechanisms, we
provide a description of the leader election process, which is a central part of each block-
chain consensus mechanism. We give an overview of the details of the two most common
decentralized consensus mechanisms, proof-of-work and proof-of-stake, in order to establish
an understanding of the differences in egalitarianism between the two models.

Proof-of-work. The core idea behind proof-of-work cryptocurrencies is solving the proof-of-
work inequality. Specifically, the mining hardware is provided with two constants, previd
and data, i.e., the id of the tip of the adopted blockchain and the data which need to be
appended to it. The mining device then brute-force searches for some string nonce, such
that H(previd||data||nonce) ≤ T for some hash function H defined by the system. Here,
T is a – relatively – small number called the difficulty target, which is adjusted in order to
ensure a stable block production rate, although typically remains constant for periods of
consecutive blocks called epochs – for example, in Bitcoin, epochs are 2016 blocks long [4].
Because the search for solutions is brute-forced, the expected number of solutions found by
a given miner is proportional to the number of evaluations of the hash function H she can
obtain in a given time frame.
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The number of hash evaluations is one of the several critical parameters to consider when
purchasing mining hardware. Other important parameters include the price of a mining
unit, as well as its electricity consumption. Mining hardware is divided in various tiers based
on performance, namely CPU miners, GPU miners, FPGA miners, and specialized ASIC
miners [29]. Although the pricing of such devices may be similar, the hashing rate and, in
turn, the return on investment, is highly dependent on the hardware’s tier. For example, the
mining hardware “Whatsminer M10” produced by the company “MicroBT” costs $1,022.00
per unit and produces $0.104266 per hour of operation in net gains, i.e., average mined
Bitcoins per hour denominated in US dollars with today’s prices (December 2018) minus
the electricity costs. On the other hand, the mining hardware “8 Nano Pro” produced by
the company “ASICMiner” costs $6,000.00 per unit, but produces $0.315327 per hour of
operation in net gains, i.e., almost three times the hourly net gains of its cheaper competitor.
Thus, if one can afford to purchase the more expensive hardware, each of their subsequent
dollar invested in electricity returns more mined coins.

It has long been folklore knowledge in the blockchain community that mining becomes
more egalitarian by using a memory-hard proof-of-work function. This intuition is correct, the
core reason being the difficulty to construct specialized hardware for memory-hard functions.
For example, no ASICs currently exist for Monero mining. Therefore, the only way to scale
mining operations is by purchasing more hardware. However, since the mining hardware
in this case varies little, both in terms of cost and performance, scaling returns become
proportional to investments. To the best of our knowledge, this paper is the first to confirm
this correspondence between the memory-hardness of proof-of-work hash functions and the
economics of mining.

I Remark 1 (Block generation at scale). We only analyze the scaling of the economics of
mining with respect to hardware. We also do not take into account basic costs such as
shipping and the availability of a basic machine to co-ordinate mining (such as a personal
computer not performing mining itself). A multitude of additional factors play important
roles for mining operations, such as space rental costs, machine cooling and maintenance
costs, as well as bulk electricity purchase. As is common in economies of scale, these relative
costs are reduced for large-scale operations, although they are similar for all proof-of-work
cryptocurrencies and thus do not affect relative comparisons between them. We also remark
that we analyze mining costs for small capital investments. If larger capital, e.g. above a few
million US dollars, is available, corporations can develop their own specialized hardware and
gain a competitive advantage by treating it as a trade secret [29]. Indeed, these details make
our comparison in favour of proof-of-stake more pronounced, as proof-of-stake operations
do not incur such types of costs and do not lend themselves to specialized mining hardware
research. We leave the analysis and calculation of egalitarianism under these parameters for
future work.

Proof-of-stake. In proof-of-stake, a minter is selected in proportion to the stake they hold,
which is to say proportionally to the amount of money they own. There exist a number
of flavours of this process. In one case, all coins automatically participate in the leader
election process – this is the case for Ouroboros [19] and Ethereum’s Casper [7]. In a second
flavour, the stake has to opt-in to participate in the election by a special process, such as
purchasing a ticket or becoming a delegate of the stake of other users. This is the case for
cryptocurrencies such as Decred [9] and EOS [20]. Among those participating in the election,
a leader is elected at random, in proportion to their stake.
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Proof-of-stake is often criticized for its lack of egalitarianism. The rationale is that, in
proof-of-stake, the more money one stakes, the more money one generates. Thus, the rich
get richer, which is precisely the opposite of egalitarianism. Additionally, in proof-of-stake
systems, the money owners could constitute a closed, rich club, refusing to share the assets
with any outsiders. In contrast, this argument claims, proof-of-work is naturally egalitarian:
everyone is paid not according to the money they own, but according to the computational
power they put to work. In this case, since computational power is a natural thing and
cannot be exclusively owned, a closed rich club cannot be formed. Although this argument
seems agreeable at first, the results of our work contradict it. In fact, correctly parameterized
stake-based systems are much more egalitarian than work-based ones.

It is instructive to dispel the above argument intuitively, before we support our position
with data. Firstly, the argument that money can be exclusively owned, but computational
power cannot, is misguided. Indeed, this may be true in the case of a peculiar oligopoly, where
a small faction of parties mutually agrees to never sell to outsiders, despite external demand.
However, in an open market, both money and computational power can be freely purchased
and, in fact, any non-negligible amount of computational power must be necessarily purchased
that way. In the present work, we assume an open market for both mining hardware
and financial capital which allows participation in the respective systems. Therefore, given
that both money and computational power are purchasable, we now need to consider the
funds one needs to invest either in technology or in financial capital in order to maximize the
returns from a cryptocurrency’s block generation mechanisms. The amount of cryptocurrency
generated by a given investment can be concretely measured and compared, thus the question
can now be analyzed quantitatively and answered concretely.

We should note that variations of proof-of-stake, such as “delegated proof-of-stake,” may
not be perfectly egalitarian, since the delegates, i.e., the leaders of the stake pools which are
formed, typically earn extra profits for managing the stake pools [5]. In this paper, we only
concern ourselves with non-delegated variants, i.e., pure proof-of-stake protocols. We leave
the study of the contrast between pool formation mechanism truthfulness (or Sybil-resilience)
and egalitarianism for future work.

4 Defining egalitarianism

Having established the basics of consensus mechanisms, we now propose the first definition of
an economic measure of egalitarianism in cryptocurrencies. Before we present our definition,
let us first state the desiderata of such a definition. First of all, we want to allow concrete
measurements to be performed on cryptocurrencies and data to be extracted in a manner that
is quantitative and not vague. Thus far, the claims for egalitarianism in various cryptocurren-
cies have been hand wavy, using a rhetoric which fails to include exact data [30, 23]. As such,
different cryptocurrencies claim egalitarianism over the others, without demonstrating the
claims or provide conclusive arguments. Secondly, a definition of egalitarianism must measure
the block generation returns of a “rich dollar” compared to that of a “poor dollar.” We thus
desire a measure which, for a particular cryptocurrency, extracts a smaller value to indicate
a lack of egalitarianism (e.g. a case where large wealth generates blocks disproportionately
faster than small wealth) and a larger value to indicate perfect egalitarianism (where every
invested dollar has exactly equal power in terms of cryptocurrency generation).

As a means towards establishing our egalitarianism definition, we define the egalitarian
curve f of a cryptocurrency. The horizontal axis of this curve plots the financial capital which
is available for investment denominated in a fiat currency, USD.3 The vertical axis plots the

3 Given that we explore a small investment duration, it makes little difference whether these are nominal
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Return On Investment (ROI), which measures the cryptocurrency amount that is freshly
generated in the investment period and remains unspent at the end of the investment period,
given an optimal allocation of the initial capital. We require the Return On Investment is
necessarily freshly generated cryptocurrency; thus, it must be newly mined or minted, and
not part of the initial capital. Of course, purchasing cryptocurrency which has already been
generated is an investment option, but it is immaterial to our egalitarianism definition, which
focuses on measuring the egalitarianism of freshly generated cryptocurrency. Finally, the
curve is plotted with a fixed investment duration in mind – in this paper, we use a duration
of 1 year. Naturally, curves of different cryptocurrencies can be compared only if they use
the same duration.

I Definition 2 (Egalitarian curve). Given a cryptocurrency c, an investment period interval d,
the set of all possible investment strategies B, we define the egalitarian curve fc,d : R+ −→ R+

of c for investment period d as:

fc,d(v) =
max
B∈B

E[B(v)]− v

v

The value max
B∈B

E[B(v)] identifies the maximum expectation of returns across all investment
strategies B, i.e., the amount of returns which the optimal strategy ensures for a given initial
capital v. The expectation is taken with the blockchain execution as a random variable,
since returns vary by execution (the randomness of the execution can affect the returns of
the strategy, as the same strategy can bring larger returns if the participant is “lucky” and
happens to produce many blocks [13]).

We remark that we do allow strategies to reinvest capital. For instance, returns earned
from mining rewards can be reinvested in electricity costs for future mining. Furthermore, for
unit consistency, we assume the strategy B(v) returns the freshly generated coins denominated
in the same units as the capital v was given in, such that f represents a ROI; thus, we
denominate the generated cryptocurrencies in USD using the market exchange rate.

It is now straightforward to define the ideal egalitarian curve. In this case, the ROI is
stable regardless of capital invested. Under these ideal conditions, the amount of freshly
generated cryptocurrency is exactly proportional to the money invested. Thus, the ideal
curve is any constant curve.

As an interesting thought experiment, consider the egalitarian curve which is decreasing.
In this case, the poor would receive proportionally more newly created cryptocurrencies for
every dollar they invest, i.e., it would be a redistribution of wealth from the rich to the poor.
However, one can quickly see that, in decentralized cryptocurrencies where the identities of
the participants are unknown, it is impossible to hope for something better than the constant
curve. Indeed, the fact that decentralized cryptocurrencies allow anonymous generation of
new identities [10] allows a rich investor to split their investment into smaller ones. Thus,
if the curve were ever to have a negative slope, the sum of the smaller splits of the rich
investment would achieve a higher gain. By the definition of the curve, which mandates that
it depicts the ROI of an optimal investment, this would be a contradiction. The following
lemma makes the above intuition more precise:

I Lemma 3 (Sybil strategies). Fix a cryptocurrency c and an investment period interval d.
Given capital v, for every natural number i ∈ N?, it holds that fc,d(v) ≤ fc,d(i · v).

USD or real USD, as long as they are the same when applying comparisons.
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The proof of this Lemma is available in Appendix A.
Using our definition of the egalitarian curve, we now define egalitarianism as a concrete

number. We begin by considering the initial capital v as a random variable following a
certain distribution D. Egalitarianism is defined as the variance of the expected ROI when
the capital is chosen from the given distribution.

I Definition 4 (Egalitarianism). Given a cryptocurrency c, an investment period duration
d and an initial capital distribution D, we define the egalitarianism e of c for investment
duration d under initial capital distribution D as follows:

ec,d,D = −Varv←D[fc,d(v)]

where f is the egalitarian curve of c.

The intuition behind this definition is that, to have egalitarianism, the ROI must remain
the same across different capital investments. As such, any deviation from the mean is
non-egalitarian. Naturally, if the egalitarianism of a certain cryptocurrency is higher than
another’s, we say that the former is more egalitarian than the latter. Of course, to be
accurate, such comparisons must only be made after fixing the parameters c and d as well
as the initial capital distribution D. We will now fix the distribution D to be the uniform
distribution between a minimum and a maximum capital. This choice corresponds to the
intuition that the returns are the same for all initial capitals alike. Clearly a cryptocurrency
with an ideal egalitarian curve is perfectly egalitarian, as we now define.

I Definition 5 (Perfect egalitarianism). A cryptocurrency c is perfectly egalitarian for
investment duration d and initial capital distribution D if ec,d,D = 0.

5 Experimental results

Having established our theoretical framework, we now provide experimental results on the
egalitarianism of various cryptocurrencies. Our experiments utilize the egalitarian curve
definition of Section 4 in order to concretely confirm – or disprove – the egalitarianism claims
of some of the major, both proof-of-work and proof-of-stake, cryptocurrencies.

In conducting our experiments we assume a static environment. Specifically, we
assume that the token prices, as well as the distribution of funds which are available for
purchasing mining hardware are static and follow the snapshot of the world which we took
at the time of writing. Furthermore, we assume that our mining operation would not
substantially affect these parameters if it were to be applied on this environment. Finally,
we assume that the set of available strategies B comprises of the honest strategies, e.g. not
including selfish mining which could provide better ROI by diverging from the protocol.

Proof-of-work. We have experimentally analyzed the egalitarianism of the following proof-
of-work coins: Bitcoin, Litecoin, Ethereum, and Monero. These cryptocurrencies act as
a representative sample among the thousands of existing cryptocurrencies. Bitcoin is the
largest and most successful cryptocurrency by market cap. Litecoin is the first cryptocurrency
aimed at becoming more egalitarian by replacing Bitcoin’s SHA256 work function with
scrypt [27], a more memory-hard function. Ethereum is one of the most promising alternative
cryptocurrencies, the first to support smart contracts, and the second largest by market cap;
its work function is different from both Bitcoin and Litecoin. Finally, Monero is special with
claims of strong egalitarianism due to its memory-hard mining function, Cryptonight [30].
Furthermore, its protocol is often updated to maintain egalitarianism [8].
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Table 1 A list of the parameters used in our proof-of-work mining simulations. Some parameters
are system-agnostic, whereas others depend on the cryptocurrency c.

Variable Description Unit BTC ETH LTC XMR DCR

|d| duration of investment years 1
ec electricity cost USD / kWh 0.08

bgr(c) block generation rate blocks / s 1 / 600 1 / 14.7 1 / 150 1 / 120 1 / 298
thr(c) total hash rate Thash / s 34,727,437 179.50374 174.537 0.00033859 178,760
br(c) reward per block tokens 12.5 3 25 3.37 11.38
tp(c) token price token / USD 4,074.25 126.12 32.10 47.27 18.62

As expected, our experiments show that Bitcoin is the least egalitarian of the four, with
Ethereum following next. Monero is more egalitarian than both, with Litecoin being the
most egalitarian among the proof-of-work coins we have studied.

For our experimental setting, we worked as follows. First, we collected empirical data
which describe the available mining hardware options in the market. For each machine choice,
we determined the cost of investment. This is comprised of its initial price (in USD) as well
as its energy cost of operation (in Watts). The cost of operation was translated to USD per
hour by considering the electricity cost of KWh. As a reference, we used the lowest average
KWh cost in the United States, i.e., $0.08 per KWh [1]. This reference electricity cost is an
estimation which can vary depending on the country of operation.

Second, we use the reported hash rate of each mining hardware machine to extract
an expectation of the freshly mined coins it would generate per hour, if it were to run
continuously. This expectation is taken over the randomness of all honest blockchain protocol
executions. As such, each party is awarded block rewards in proportion to their computational
power. The difference between revenue per unit of time and cost of operation per unit of time
produces an income rate, which is measured in USD per hour. For our experiments, we use
an interval of investment with |d| = 1 year. Although this choice is arbitrary, it corresponds
to the usual definition of ROI in traditional finance.

Our investment strategy is as follows. The initial available capital is allocated to an upfront
technology investment, in which an integer instance of the Unbounded Knapsack problem
[22] is solved using dynamic programming4 to optimize the total cash flow. Subsequently,
as long as the cash flow is positive, the purchased machines operate for the indicated total
duration, reinvesting part of the freshly minted coins in electricity costs, in order to generate
more coins. Eventually, this strategy produces an income of freshly generated coins, which
have not been spent and are reported as the strategy’s income.

To calculate our concrete numbers, we employ the constants shown in Table 1. We
use the expected block generation rates for each cryptocurrency, as well as the reward per
block, token price, and mining difficulty at the time of writing, all of which we assume
remain constant. The variance of electricity cost, the duration of investment, as well as small
fluctuations in price and difficulty do not qualitatively change the shape of our egalitarian
curves (see Appendix C).

LetM denote the set of all available mining machines. For each machine m ∈M, our
empirically collected data specifies the following parameters:
(i) the energy consumption rate ecr(m) in Watts,
(ii) an initial cost of purchase ic(m) in USD, and
(iii) a hash rate hr(m) in Terahashes per second.

4 The source code of our implementation for this calculation is available in our repository.
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Given the above, we can now calculate the expected income rate per hour E[ir(m)] for a
given machine m and a cryptocurrency c. In the following equation, the first part identifies
the income per hour, i.e., the amount of tokens (denominated in USD) which the machine
produces per hour, whereas the second part of the equation identifies the electricity cost, i.e.,
the product of the consumed electricity multiplied by the price of a single KWh:

E[ir(m)] = 3600 · hr(m)
thr(c) · br(c) · bgr(c) · tp(c)− ecr(m) · ec

There are many possible configurations for technology investments. Each configuration
comprises of a number of copies n ∈ N of every machine type m ∈M. Therefore, we define
each configuration as m ⊆M×N, with total initial cost of investment for such configuration
being ic(m) =

∑
(m,n)∈m n · ic(m).

The above figure is given in USD per hour and, since the initial capital should suffice
to buy the machines of the configuration, we require that ic(m) ≤ v, where v is the initial
available capital at the beginning of the simulation.

Now, in order to identify the strategy’s optimal net income for the interval d, we iterate
over all possible machine configurations, for which the above inequality holds, and choose
the one with the maximum returns:

BOPT(v) = max {
∑

(m,n)∈m

|d|E[ir(m)] : m ⊆M× N ∧ ic(m) ≤ v}

We note that this is only an approximation to the optimal (in our limited model) solution,
which we used in our simulations. We consider this sufficiently close to optimal to allow for
the calculation of egalitarianism. We give an integer programming formulation of the optimal
strategy for capital allocation in Appendix B. We remark here that the general problem
of mining hardware allocation (including our simplified approximation) is computationally
hard [16], as both the Knapsack and the Integer Programming problems are NP-complete.

As the simulation parameters are many and diverse, in order to allow others to run the
experiments with different values, as well as for reasons of reproducibility and falsifiability,
we openly release our mining investment optimizer as well as our data for public use5.

The egalitarianism of Bitcoin, Ethereum, Litecoin and Monero are shown in Figures 1a,
1b, 1c, and 1d respectively. Decred is a hybrid proof-of-work/proof-of-stake cryptocurrency,
in which block generation is a collaboration between miners and minters. Specifically, each
block which is mined via proof-of-work needs to be “vouched for” by a certain number of
minters, who give it a vote of confidence. Both the miners and the minters who participate
in block generation are rewarded. An investor can therefore choose to participate in Decred
by either investing in mining hardware and performing proof-of-work, or by purchasing stake
and performing proof-of-stake (or a combination thereof). We note that the choice of whether
to mine or mint Decred is not always clear. While mining may be more profitable for a
certain initial capital, it can also carry various risks. For instance, if the difficulty increases,
the mining hardware may be rendered inefficient and also hard to sell. Proof-of-work also
carries the operational overhead discussed in Remark 1. On the other hand, stake can always
be sold, although the price may fluctuate, and carries negligible operational overhead. As
the decision between the two is not obvious, we analyze both strategies independently. The
egalitarianism of proof-of-work mining for Decred is shown in Figure 1d.

5 Our mining investment calculator and our mining hardware data are available under the MIT license
and a Creative Commons 4.0 Attribution License respectively at https://github.com/decrypto-org/
egalitarianism.

https://github.com/decrypto-org/egalitarianism
https://github.com/decrypto-org/egalitarianism
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(c) Litecoin
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(e) Proof-of-work Decred

Figure 1 Egalitarianism curves of the proof-of-work cryptocurrencies analyzed in this work.
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(a) Proof-of-stake Decred
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(b) Pure proof-of-stake Ouroboros

Figure 2 The egalitarianism curves of the proof-of-stake systems analyzed in this work.

It is evident from all figures that the ROI is “capped” by a maximum value, which is
observed in specified intervals. Indeed, this value identifies the ROI of the best available
machine and is in line with Lemma 3. In other words, as long as an investor is able to buy
the machine which returns the most profits, then they achieve the best possible ROI. In
case an investor does not have enough capital to buy the best mining product, they may
buy a less profitable machine and achieve less, though still positive, ROI. This observation
explains the small spikes in ROI which may be seen e.g. in Bitcoin’s figure for capital in
the range [0, 2000]. Also, in case the capital is more than the cost of the machine, then the
remaining capital is effectively discarded. Therefore, although two investors A, B may start
with initial capital vA < vB , if their returns, in absolute terms, are the same, then the ROI
of B will be smaller as a percentage compared to the ROI of A. This observation explains
the decrease in ROI after the spikes. Finally, we observe that, as the capital increases, the
ROI converges to the cap. This is explained by the fact that the “discarded” capital, i.e., the
capital which cannot be invested in mining hardware, is a significantly smaller percentage of
the total capital for large investments.

Proof-of-stake. We now analyze the proof-of-stake egalitarianism in two settings. First,
we consider pure proof-of-stake, which can be applied on top of a protocol like Ouroboros. In
this case, pure is in opposition to delegated proof-of-stake, a setting where the stakeholders
are required to delegate their stake to other parties, namely “stake pools” and is deployed
in cryptocurrencies such as EOS, Bitshares, and others. Second, we consider the case of
minting Decred via its proof-of-stake mechanism.

The egalitarian curve for staking Decred is illustrated in Figure 2a. As mentioned above,
Decred is an opt-in staking cryptocurrency, where staking occurs by purchasing so-called
tickets. Since the price of a ticket is quantized, egalitarianism is harmed for capitals which
are not multiples of ticket prices. However, one can see that the envelope of maxima of this
curve is perfectly egalitarian. The spikes that cause the discontinuity of the curve are due to
the large ticket price (currently $1756), which in Decred is determined by the market and is
high due to the limited supply of tickets available per ticket pool, a parameter inherent in
their protocol. Perfect egalitarianism could in principle be achieved by making the ticket
price approach 0.
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Table 2 A comparison of the egalitarianism values of the cryptocurrencies explored in this study.

Name Consensus mechanism Egalitarianism

Bitcoin Proof-of-work -0.034490298
Ethereum Proof-of-work -0.006926114
Litecoin Proof-of-work -0.000271822
Monero Proof-of-work -0.002206135

Decred Proof-of-work
Proof-of-stake

-0.412524642
-0.000348280

Ouroboros Proof-of-stake -0.000000295

In the case of Ouroboros, every coin has the same probability of being chosen for
eligibility [19]. When a coin is eligible for block generation, its owner can create a block by
providing a proof of ownership of the chosen coin. Consider the case of a cryptocurrency
with N coins in circulation. When a block needs to be created, a coin is chosen at random
from the set of N coins. Therefore, each coin may be chosen with 1

N probability. Then
the address which owns the chosen coin, in other words the stakeholder which controls this
coin, is eligible to generate a block and receive the block rewards associated with it6. In
our experiments, we assume that every block is associated with a constant reward, which
pertains to newly minted coins. Furthermore, since computational power does not affect
the rate of block production, it is reasonable to assume that both the electricity and the
hardware equipment’s price is constant for all users, regardless of stake accumulation, so all
users can participate using – relatively – cheap resources (cf. Remark 1).

Figure 2b depicts the simulation of a pure proof-of-stake system. In this case, the users
pay a set transaction fee for the purchase of the initial stake. The rest of their capital is
allocated as stake. The figure suggests that this system is closer to perfect egalitarianism
compared to the rest of our case studies.

Summary. Our findings are summarized in Table 2. We find that Bitcoin is the least
egalitarian, followed in turn by Ethereum, Monero, and Litecoin7. The latter two are the
most egalitarian due to their use of CryptoNight and scrypt respectively. Mining with Decred
provides the worst egalitarianism of all tested coins. However, the most egalitarian coins
involve staking. Decred staking, due to its quantized ticket pricing, is only approximately
egalitarian and comparable to the performance of mining Litecoin. Pure proof-of-stake, which
allows continuous staking, is almost perfectly egalitarian, its small divergence from perfect
egalitarianism stemming from the small capital which is required to pay the transation fees8
to participate in the staking process.

6 Conclusion

In this work we explore the notion of egalitarianism of cryptocurrencies. Although this notion
has long been discussed, we are the first to give a definition, which allows us to concretely
argue about the egalitarianism of various existing systems.

6 This slightly deviates from the work of [19] in the fact that the payout in our case is due to freshly
minted coins and not fees. However, the reward schedule is identical.

7 Litecoin may appear to have better egalitarianism compared to Monero due to limited availability of
mining machines. More data are needed to economically compare scrypt and CryptoNight mining.

8 As of January 2019, according to https://cardanoexplorer.com/, in the Cardano implementation of
Ouroboros these fees are in the order of $0.01.
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The results of our experimental simulations are very optimistic in terms of usability of
our metric, as they provide concrete figures which measure the egalitarianism of several
popular cryptocurrencies. The most exciting result arises from the comparison between
the proof-of-work and proof-of-stake mechanisms. Although blockchain folklore argued in
favour of proof-of-work systems in terms of egalitarianism, our results show that, in fact, it
is proof-of-stake systems which are more egalitarian.

Our work provides the first step towards establishing a concrete framework of egalitari-
anism evaluation in the cryptocurrency ecosystem. Future work will focus in evaluating
more existing cryptocurrencies and investigating variations of consensus mechanisms such
as delegated proof-of-stake. Additionally, we leave for future work the treatment of more
complex economical models of the mining game such as dynamic systems and adversarial
strategies, as well as economies of scale in the multitude of parameters we have ignored,
such as electricity bulk pricing. We conjecture the consideration of such parameters will
exacerbate the gap between proof-of-work and proof-of-stake which we have illustrated in
this work.
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A Proofs

I Lemma 3 (Sybil strategies). Fix a cryptocurrency c and an investment period interval d.
Given capital v, for every natural number i ∈ N?, it holds that fc,d(v) ≤ fc,d(i · v).

Proof. We prove the statement via contradiction. Assume that for capital v exists a natural
number i ∈ N? such that fc,d(v) > fc,d(i · v). Also assume that for capital v the optimal
strategy is B′, so: max

B∈B
E[B(v)] = E[B′(v)]. Then, for capital i · v exists a strategy B′′, such

that the capital is split into i equally-sized parts and the strategy B′ is applied on each
part. Given that the executions of the substrategies on these parts are independent, then
the expected returns for the strategy B′′ are:

E[B′′(i · v)] = i · E[B′(v)] = i ·max
B∈B

E[B(v)] (1)

It also holds that B′′ is at best the optimal strategy, so:

max
B∈B

E[B(i · v)] ≥ E[B′′(i · v)] (1)=⇒ max
B∈B

E[B(i · v)] ≥ i ·max
B∈B

E[B(v)] (2)

However, it should hold that:

fc,d(v) > fc,d(i · v)⇒
max
B∈B

E[B(v)]− v

v
>

max
B∈B

E[B(i · v)]− i · v
i · v

(2)=⇒
max
B∈B

E[B(v)]− v

v
>

i ·max
B∈B

E[B(v)]− i · v
i · v ⇒

max
B∈B

E[B(v)]− v

v
>

max
B∈B

E[B(v)]− v

v
(3)

which is impossible. J

B Integer programming formulation

In our experiments, we used a Dynamic Programming solution to solve the Knapsack problem
in order to allocate mining machines upfront. An optimal solution could use the proceeds of
mining not only to reinvest in electricity, but also to purchase new machines. This is captured
by the Integer Programming formulation in Figure 3, which gives the optimal investment
strategy in the full model.

This maximization problem tries to optimize the freshly generated proceeds. The variables
to solve for, xm,t ∈ N, describe the number of machines of type m that the investor holds at
time t. We assume machines cannot be sold back to the market, hence xm,t−0 ≤ xm,t. The
investment starts with initial capital v and no machines, hence xm,0 = 0. The program can
then decide to purchase machines as time goes by. For any costs, it first uses up the initial
capital v to pay for them (this initial capital is useless to keep, as it does not contribute to
freshly generated proceeds, which are our utility here), and subsequently uses the proceeds to
pay for any remaining costs. Capital which is not expended to pay for costs is discarded by
the max operator in the maximization clause. The condition the integer program is subject to
requires that the investment has non-negative capital at every point in time, and hence does
not run out of money. In this formulation, it is assumed that d is a set of consecutive integers
representing indexed hours of execution (a more fine-grained solution can be obtained by
increasing this temporal resolution as needed).
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Maximize

max(0, v −
∑

t∈d\d[0]

∑
m∈m

(xm,t − xm,t−1)ic(mi)−
∑
t∈d

∑
m∈m

xm,t · ecr(m) · ec)

+
∑
t∈d

∑
m∈m

xm,t · 3600 · hr(m)
thr(c) · br(c) · bgr(c) · tp(c)

subject to∑
t′≤t

t′ 6=d[0]

∑
m∈m

(xm,t′ − xm,t′−1)(−ic(mi) + (t− t′ + 1)|E[ir(m)]) ≤ v for t ∈ d

xm,t−1 ≤ xm,t for m ∈ m and t ∈ d \ d[0]
xm,d[0] = 0 for m ∈ m

and xm,t ∈ N for m ∈ m and t ∈ d

Figure 3 An Integer Programming formulation of the optimal investment strategy in our model.

C Parameters affecting egalitarianism

Throughout this paper, we have assumed certain parameters (cryptocurrency prices, electri-
city prices, duration of investment and mining difficulty) remain constant throughout the
investment period. Furthermore, we have taken into account current market values to the
best of our knowledge. We note that, while the actual egalitarianism numbers may change
depending on these parameters, the general shape of egalitarian curves and the qualitative
comparison between different cryptocurrencies remains the same. To illustrate this point, we
have measured the egalitarian curve of Bitcoin for varying parameter values. Our results are
demonstrated in Figure 4.

D Machines

Data for mining machines was obtained from a multitude of resources on the Internet9. Data
for graphics processing units (GPU) and central processing units (CPU) was obtained by
calculating the median of multiple user benchmarks when available10. The price of each
machine used in our experiments is the reported retails price of machine at date of access.
When a new machine is not available for sale, the price of a used or refurbished machine is

9 An exhaustive list of our resources includes the online stores https://whattomine.com/, https://
cryptominer.deals/, https://www.asicminervalue.com/, https://www.reddit.com/r/MoneroMining/
comments/9omjfb/rtx_2080_ti_mining_monero_at_1228hs_and_more/, https://www.newegg.com/,
https://www.amazon.com/, https://shop.bitmain.com.cn, https://www.cryptouniverse.at,
https://canaan.io, http://miner.ebang.com.cn, https://swminershop.com, https://asicminer.co,
https://estrahash.com, http://www.innosilicon.com, https://pangolinminer.com, https:
//www.bitfily.io, https://hashdeploy.net/, https://www.pantech.company, https://
www.cryptominerbros.com, https://pandaminer.com, https://minersdeals.com, https://
sharkmining.com, https://shop.miningstore.com, https://mineshop.eu, https://www.bitmart.co.za,
https://shop.futurebit.io, https://www.aliexpress.com, https://bitech-mining.com,
https://asicminermarket.com, https://www.baikalminer.com, https://prominerz.com

10 https://www.xmrstak.com/tag/monero/, https://gpustats.com/, https://www.ethmonitoring.com/
benchmark, https://monerobenchmarks.info/
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Figure 4 Bitcoin egalitarian curves under varying parameters.

used. For reproducibility purposes, our complete data set is openly available in our repository.
For reference, we list a summary of those machines which provide a positive net gain per hour
after purchase (and can thus be profitable under our assumed parameter values) in Table 3.
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Table 3 Machines used in experiments.

Bitcoin
Name Hashes / s Watt Price (USD)

8 Nano Pro 76 · 1012 4,000 6,000
Whatsminer M10S 55 · 1012 3,500 2,558
Ebit E11++ 44 · 1012 1,980 2,024
8 Nano 44 · 1012 2,100 1,790
T3 43T 43 · 1012 2,100 2,279
Ebit E11+ 37 37 · 1012 2,035 1,517
WX6 34 · 1012 3,200 1,275
Whatsminer M10 33 · 1012 2,145 1,022
T2T-32T 32 · 1012 2,200 1,568
Ebit E11 30 · 1012 1,950 1,110
Antminer S15 (28T) 28 · 1012 1,596 1,249
Antminer S15 (27T) 27 · 1012 1,539 1,363
T2T-25T 25 · 1012 2,050 1,150
Snow Panther B1+ 24.5 · 1012 2,100 580
T2T-24T 24 · 1012 1,980 1,350
S11i 24 · 1012 2,300 937
Antminer T15 23 · 1012 1,541 840
Antminer S11 20.5 · 1012 1,435 512
AvalonMiner 921 20 · 1012 1,800 415
Antminer S9-Hydro 18 · 1012 1,728 713
Ebit E10 18 · 1012 1,650 2,999
T2 Terminator 17.2 · 1012 1,570 1,118
DragonMint T1 16 · 1012 1,480 1,600
AvalonMiner 851 15 · 1012 1,450 380
Antminer S9i 14.5 · 1012 1,365 440
Antminer S9j 14.5 · 1012 1,365 307
AvalonMiner 841 13.6 · 1012 1,290 354.44
SX6i 11 · 1012 900 419

Ethereum
Name Hashes / s Watt Price (USD)

A10 EthMaster 485 · 106 850 5,399
A10 EthMaster 432 · 106 740 4,799
Shark Extreme 2

(8×NVIDIA GTX 1080 Ti) 420 · 106 1,500 9,779

Maximus+ (8×1080TI) 370 · 106 2,200 7,520
A10 EthMaster 365 · 106 650 4,099
Ethereum Mining Rig

(12x AMD RX 570 GPU) 360 · 106 1,600 4,345

ULTRON (8×P104) 320 · 106 1,700 5,338
Ethereum Mining Rig

(8× NVIDIA 1080 8GB GPU) 310 · 106 1,100 6,267

Shark Extreme 2
(6×NVIDIA GTX 1080 Ti) 300 · 106 1,200 7,880

Shark Extreme 2 (8×AMD Vega 56) 290 · 106 1,700 6,879
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Shark Extreme 2
(8×NVIDIA GTX 1070 Ti 8 GB) 245 · 106 1,400 6,679

Shark Extreme 2 (8×AMD RX 580) 240 · 106 1,100 4,590
Ethereum Mining Rig

(8×AMD MSI RX 580 GPU) 240 · 106 1,000 3,453

IMPERIUM+ (8×RX 570/580) 230 · 106 1,300 3,577
Antminer G2 220 · 106 1,200 3,799
Shark Extreme 2 (6×AMD Vega 56) 220 · 106 1,275 5,680
Ethereum Mining Rig

(8×AMD MSI RX 570 GPU) 220 · 106 950 3,2253

Shark Extreme 2
(4×NVIDIA GTX 1080 Ti) 210 · 106 800 4,979

Antminer E3 190 · 106 760 654
Shark Extreme 2

(6×NVIDIA GTX 1070 Ti 8 GB) 185 · 106 1,050 5,480

Shark Extreme 2 (6×AMD RX 580) 180 · 106 825 3,890
Ethereum Mining Rig

(6×AMD RX580 8gb GPU) 180 · 106 900 2,342

Ethereum Mining Rig
(6×AMD MSI RX 580 GPU) 175 · 106 860 1,967

Ethereum Mining Rig
(6×AMD MSI RX 580 GPU) 170 · 106 750 2,156

Thorium 6580 GPU 160.2 · 106 700 4,297
Thorium 6570 GPU 144 · 106 750 3,974
Shark Extreme 2

(4×NVIDIA GTX 1070 Ti 8 GB) 122 · 106 600 3,580

Zodiac 6-1060 GPU 120.78 · 106 750 3,222
Shark Extreme 2 (4×AMD RX 580) 120 · 106 550 2,590
Ethereum Mining Rig

(6×AMD MSI RX 560) 80 · 106 370 1,823

GeForce RTX 2080Ti 55 · 106 155 1,249
GeForce GTX 1080Ti 51.11 · 106 175 999
RX Vega 64 44 · 106 230 399
GeForce RTX 2080 41 · 106 105 699
GeForce GTX TITAN X 40 · 106 250 1,099
P104-100 38.89 · 106 127 569
RX Vega 56 38.75 · 106 210 339
GeForce RTX 2070 38.5 · 106 140 499
GeForce GTX 1080 34.07 · 106 121 633
RX 580 31.3 · 106 110 185
GeForce GTX 1070 31.1 · 106 108 319
GeForce GTX 1070Ti 30.83 · 106 107 489
RX 570 29.85 · 106 65 142
RX 480 29.71 · 106 70 237
RX 470 29 · 106 60 340
GeForce GTX 1060 (6GB) 23.81 · 106 95 264
GeForce GTX 1060 (3GB) 19.32 · 106 69 189
GeForce GTX 1050Ti 13.18 · 106 75 169

Litecoin
Name Hashes / s Watt Price (USD)
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A6 LTCMaster 123 · 107 1,500 3,000
A4+ LTCMaster 62 · 107 750 1,500
Apollo LTC Pod 10 · 107 100 299

Monero
Name Hashes / s Watt Price (USD)

Shark Extreme 2 (8×AMD Vega 56) 14,800 1,700 6,879
Shark Extreme 2 (6×AMD Vega 56) 11,000 1,275 5,680
Shark Extreme 2 (8×AMD RX 580) 6,880 1,100 4,590
Shark Extreme 2 (6×AMD RX 580) 5,160 825 3,890
Shark Extreme 2 (4×AMD RX 580) 3,440 550 2,590
RX Vega 64 2,020 140 399
RX Vega 56 1,920 140 339
GeForce RTX 2080Ti 1,200 150 1,249
RX 580 976 89 185
RX 480 965 140 237
Ryzen Threadripper 1920X 955 140 435
GeForce RTX 2080 898 132 699
GeForce GTX 2070 880 140 499
RX 470 840 120 340
GeForce GTX 1070 777 112 319
RX 570 740 90 142
Ryzen 7 2700X 715 105 309
Ryzen 5 1600X 532 47 179
Ryzen 5 1600 531 65 159

Decred
Name Hashes / s Watt Price (USD)

Whatsminer D1 44 · 1012 2,200 1,588
Whatsminer DCR 44 · 1012 2,200 1,890
Antminer DR5 35 · 1012 1,610 1,282
STU-U1+ 12.8 · 1012 1,850 1,560
STU-U1 11 · 1012 1,600 1,389
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Abstract
In this paper we study the stability and the security of the distributed data structure at the base of
the IOTA protocol, called the Tangle. The contribution of this paper is twofold. First, we present a
simple model to analyze the Tangle and give the first discrete time formal analyzes of the average
number of unconfirmed transactions and the average confirmation time of a transaction.

Then, we define the notion of assiduous honest majority that captures the fact that the honest
nodes have more hashing power than the adversarial nodes and that all this hashing power is
constantly used to create transactions. This notion is important because we prove that it is a
necessary assumption to protect the Tangle against double-spending attacks, and this is true for
any tip selection algorithm (which is a fundamental building block of the protocol) that verifies
some reasonable assumptions. In particular, the same is true with the Markov Chain Monte Carlo
selection tip algorithm currently used in the IOTA protocol.

Our work shows that either all the honest nodes must constantly use all their hashing power to
validate the main chain (similarly to the Bitcoin protocol) or some kind of authority must be provided
to avoid this kind of attack (like in the current version of the IOTA where a coordinator is used).

The work presented here constitute a theoretical analysis and cannot be used to attack the
current IOTA implementation. The goal of this paper is to present a formalization of the protocol
and, as a starting point, to prove that some assumptions are necessary in order to defend the system
again double-spending attacks. We hope that it will be used to improve the current protocol with a
more formal approach.
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1 Introduction

Since the day Satoshi Nakamoto presented the Bitcoin protocol in 2008 [5], the interest
in Blockchain technologies has grown continuously. More generally, this interest concerns
Distributed Ledger Technology, which refers to a distributed data storage protocol. Usually it
involves a number of nodes (or processes, or agents) in a network that are known to each
other or not. Those nodes may not trust each-other so the protocol should ensure that
they reach a consensus on the order of the operations they perform, in addition to other
mechanisms like data replication for instance.

The consensus problem has been studied for a long time [1, 6] providing a number of
fundamental results. But the solvability of the problem was usually given in terms of
proportion of faulty agents over honest agents. In a trustless network, where anyone can
participate, an adversary can simulate an arbitrary number of nodes in the network. To
avoid that, proof systems like Proof of Work (PoW) or Proof of Stake (PoS) are used to
link the importance of an entity with some external properties (processing power in PoW)
or internal properties (the number of owned tokens in PoS) instead of simply the number
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of nodes it controls. The consensus problem is now solvable only if the importance of the
adversary (given in terms of hashing power or in stake) is smaller than the honest one (the
proportion is reduced to 1/3 if the network is asynchronous).

In Bitcoin and in the other blockchain technologies, transactions are stored in a chain of
blocks, and the PoW or PoS is used to elect one node that is responsible for writing data in
the next block. The “random” selection and the incentive for a node to execute honestly
the protocol make the whole system secure, as it was shown by several formal analysis [2, 5].
Usually, there are properties that hold with high probability i.e., with a probability that
tends to one quickly as the time increases. For instance, the order between two transactions
does not change with probability that tends to 1 exponentially fast over the time in the
Bitcoin protocol, if the nodes executing honestly (or rationally) the protocol have more than
a third of the hashing total power.

In this paper we study another distributed ledger protocol called the Tangle, presented
by Serguei Popov [7], that is used in the IOTA cryptocurrency to store transactions. The
Tangle is a Directed Acyclic Graph (DAG) where a vertex, representing a transaction, has
two parents, representing the transactions it confirms.

According to the protocol a PoW Puzzle must be solved to add a transaction to the
Tangle. This PoW prevents an adversary from spamming the network. However, it is not
clear in the definition of the Tangle how this PoW impacts its security.

When a new transaction is appended to the Tangle, it references two previous unconfirmed
transactions, called tips. The algorithm selecting the two tips is called a Tip Selection
Algorithm (TSA). It is a fundamental parts of the protocol as it is used by the participants
to decide, among two conflicting transactions, which one is valid. It is the most important
part in order for the participants to reach a consensus. The TSA currently used in the IOTA
implementation uses the PoW contained in each transaction to select the two tips.

Related Work

Very few academic papers exist on this protocol, and there is no previous work that formally
analyzes its security. The white paper behind the Tangle [7] presents a quick analysis of
the average number of transactions in the continuous time setting. This analysis is done
after assuming that the number of tips converge toward a stationary distribution. The same
paper presents a TSA using Monte Carlo Markov Chain (MCMC) random walks in the DAG
from old transactions toward new ones, to select two unconfirmed transactions. The random
walk is weighted to favor transactions that are confirmed by more transactions. There is
no analysis on how the assigned weight, based on the PoW of each transaction affects the
security of the protocol. This MCMC TSA is currently used by the IOTA cryptocurrency.

It is shown in [8] that choosing the default TSA is a Nash equilibrium. Participants are
encouraged to use the MCMC TSA, because using another TSA (e.g. a lazy one that confirms
only already confirmed transactions) may increase the chances of seeing their transactions
unconfirmed.

Finally, the tangle has also been analyzed by simulation [3] using a discrete time model,
where transactions are issued every round following a Poisson distribution of parameter λ.
Like in the continuous time model, the average number of unconfirmed transactions (called
tips) seems to grow linearly with the value of λ, but a little bit slower (≈ 1.26λ compared to
2λ in the continuous time setting).
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Contributions

The contribution of our paper is twofold. First, we analyze formally the number of tips in
the discrete time setting, depending on the value of λ by seeing it as a Markov chain where
at each round, there is a given probability to obtain a given number of tips. Unlike previous
work, we here prove the convergence of the system toward a stationary distribution. This
allows us to prove the previous results found by simulations [3] that the average number of
tips is stationary and converge towards a fixed value.

Second, we prove that if the TSA depends only on the PoW, then the weight of the honest
transactions should exceed the hashing power of the adversary to prevent a double-spending
attack. This means that honest nodes should constantly use their hashing power and issue
new transactions, otherwise an adversary can attack the protocol even with a small fraction
of the total hashing power. Our result is interesting because it is true for any tip selection
algorithm i.e., the protocol cannot be more secure by simply using a more complex TSA.

The remaining of the paper is organized as follow. Section 2 presents our model and the
Tangle. In Section 3 we analyze the average confirmation time and the average number of
unconfirmed transactions. In Section 4 we prove our main theorem by presenting a simple
double-spending attack.

2 Model

2.1 The Network
We consider a set N of processes, called nodes, that are fully connected. Each node can send
a message to all the other nodes (the network topology is a complete graph).

We assume nodes are activated synchronously. The time is discrete and at each time
instant, called round, a node reads the messages sent by the other nodes in the previous
round, executes the protocol and, if needed, broadcast a message to all the other nodes.
When a node broadcasts a message, all the other nodes receive it in the next round. Those
assumptions are deliberately strong as they make an attack more difficult to perform, which
is useful when studying necessary assumptions.

2.2 The DAG
In this paper, we consider a particular kind of distributed ledger called the Tangle, which
is a Direct Acyclic Graph (DAG). Each node u stores at a given round r a local DAG Gur
(or simply Gr or G if the node or the round are clear from the context), where each vertex,
called site, represents a transaction. Each site has two parents (possibly the same) in the
DAG. We say a site directly confirms its two parents. All sites that are confirmed by the
parents of another site are also said to be confirmed (or indirectly confirmed) by it i.e., there
is a path from a site to all the sites it confirms in the DAG (see Figure 1). A site that is not
yet confirmed is called a tip. There is a unique site called genesis that does not have parents
and is confirmed by all the other sites. For simplicity we identify a DAG simply by a set of
sites G = (si)i∈I

Two sites may be conflicting. This definition is application-dependent so we assume that
there exists a function areConflicting(a, b) that answer whether two sites are conflicting or not.

If the Tangle is used to store the balance of a given currency (like the IOTA cryptocur-
rency), then a site represents a transaction moving funds from a sender address to a receiver
address and two sites are conflicting if they try to move the same funds to two different
receivers i.e., if both executing transactions results in a negative balance for the sender. The

Tokenomics 2019



8:4 The Stability and the Security of the Tangle

1|12

2|10

2|10
4|8

3|6

3|7 6|6

6|5
9|4

7|3

10|2

12|1

11|1

Figure 1 An example of a Tangle where each site has a weight of 1. In each site, the first number
is its score and the second is its cumulative weight. The two tips (with dashed border) are not
confirmed yet and have cumulative weight of 1.

details of this example are outside the scope of this paper, but we may use this terminology
in the remaining of the paper. In this case, signing a transaction means generating a site,
and broadcasting a transaction means sending it to the other nodes so that they can include
it to their local Tangle.

At each round, each node may sign one or more transactions. For each transaction, the
node selects two parents. The signed transaction becomes a site in the DAG. Then, the node
broadcasts the site to all the other nodes.

DAG extension

I Definition 1. Let G be a DAG and A a set of sites, disjoint from G. If each site of
A has its parents in A or in the tips of G, then we say that A is an extension of G and
G ∪A denotes the DAG composed by the union of sites from G and A. We also say that A
extends G.

One can observe that if A extends G, then the tips of G form a cut of G ∪A.

I Definition 2. Let A be a set of sites extending a DAG G. We say A completely extends G
(or A is a complete extension of G) if all the tips of G∪A are in A. In other word, the sites
of A confirm all the tips of G.

I Definition 3. A DAG of a node may contain conflicting sites. If so, the DAG is said to
be forked (or conflicting). A conflict-free sub-DAG is a sub-DAG that contains no conflicting
sites.

Weight and Hashing Power

When a transaction is signed, a small proof of work (PoW) has to be solved to include it in
the DAG. The difficulty of this PoW is called the weight of the site. Initially, this PoW has
been added to the protocol to prevent a node from spamming a huge number of transactions.
In order to issue a site of weight w a processing power (or hashing power) proportional to w
needs to be consumed.

With the PoW, spamming requires a large amount of processing power, which increases
its cost and reduces its utility. It was shown [7] that sites should have bounded weight and
for simplicity, one can assume that the weight of each site is 1.

Then, this notion is also used to compute the cumulative weight of a site, which is the
amount of work that has been done to deploy this site and all sites that confirm it. Similarly,
the score of a site is the sum of all weight of sites confirmed by it i.e., the amount of work that
has been done to generate the sub-DAG confirmed by it (see Figure 1 for an illustration).
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2.3 Tip Selection Algorithm
When signing a transaction s, a node u has to select two parents i.e., two previous sites in its
own version of the DAG. According to the protocol, this is done by executing an algorithm
called the tip selection algorithm (TSA). The protocol says that the choice of the parents
must be done among the sites that have not been confirmed yet i.e., among tips. Also, the
two selected parents must not confirm, either directly or indirectly, conflicting sites.

We denote by T the TSA, which can depend on the implementation of the protocol. For
simplicity, we assume all the honest nodes use the same algorithm T . As pointed by previous
work [7], the TSA is a fundamental factor of the security and the stability of the Tangle.

For our analysis, we assume T depends only on the topology of the DAG, on the weight
of each site in the DAG and on a random source. With those assumptions, we say the TSA
is stateless. If it also depends on previous output of the TSA it is said to be stateful.

The output of T depends on the current version of the DAG and on a random source
(that is assumed distinct for two different nodes). The random source is used to prevent
different nodes that has the same view from selecting the same parents when adding a site to
the DAG at the same time. However, this is not deterministic and there are not guaranties
i.e., it is possible that two distinct nodes issue two sites with the same parents.

Local Main DAG

The local DAG of a node u may contain conflicting sites. For consistency, a node u can keep
track of a conflict-free sub-DAG mainu(G) that it considers to be its local main DAG. If
there are two conflicting sites a and ā in the DAG G, the local main DAG contains at most
one of them.

The main DAG of a node is used as a reference for its own view of the world, for instance
to calculate the balance associated with each address. Of course, this view may change over
the time. When new transactions are issued, a node can change its main DAG, updating its
view accordingly (exactly like in the Bitcoin protocol, when a fork is resolved due to new
blocks being mined). When changing its main DAG, a local node may discard a sub-DAG in
favor of another sub-DAG. In this case, several sites may be discarded. This is something we
want to avoid or at least ensure that the probability for a site to be discarded tends quickly
to zero with time.

The tip selection algorithm decides what are the tips to confirm when adding a new site.
Implicitly, this means that the TSA decides what sub-DAG is the main DAG. In more detail,
the main DAG of a node at round r is the sub-DAG confirmed by the two sites output by
the TSA. Thus, a node can run the TSA just to know what its main DAG is, even if no site
has to be included to the DAG.

One can observe that, to reach consensus, the TSA should ensure that the main DAG
of all the nodes contain a common prefix of increasing size that represents the transactions
everyone agree on.

2.4 Adversary Model
Among the nodes, some are honest i.e., they follow the protocol, and some are byzantine and
behave arbitrarily. For simplicity, we can assume that only one node is byzantine and we
call this node the adversary. The adversary is connected to the network and receive all the
transactions like any other honest node. He can behave according to the protocol but he can
also create (and sign) transactions without broadcasting them, called hidden transaction (or
hidden sites).
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When an honest node issues a new site, the two sites the T outputs must be two tips,
at least in the local DAG of the node. Thus, one parent p1 cannot confirm indirectly the
other p2, because in this case the node is aware of p2 having a child and not being a tip.
Also, a node cannot select the same site as parent for two different site, thus the number
of honest children cannot exceed the number of nodes in the network. This implies the
following property.

I Property 1. In a DAG constructed by n honest nodes using a TSA, a site cannot have
one parent that confirms the other one. Moreover, the number of children of each site is
bounded by the number n of nodes in the network.

The first property should be preserved by an adversary as it is easy for the honest nodes
to check and discard a site that does not verify it. However the adversary can issue multiple
sites that directly confirm the same site and the honest nodes have no way to know which
sites are honest.

Assiduous Honest Majority Assumption

The cumulative weight and the score can be used by a node to select its main DAG. However,
even if it is true that a heavy sub-DAG is harder to generate than a light one, there is no
relation yet in the protocol between the weight of sites and the hashing power capacity of
honest nodes.

We define the assiduous honest majority assumption as the fact that the hashing power
of honest nodes is constantly used to generate sites and that it is strictly greater than the
hashing power of the adversary. In fact, without this assumption, it is not relevant to look at
the hashing power of the honest nodes if they do not constantly use it to generates new sites.

Thus, under this assumption, the cumulative weight of the honest DAG grows according
to the hashing power of the honest nodes, and the probability that an adversary generates
more sites than the honest nodes in a given period of time tends to 0 as the duration of the
period tends to infinity. Conversely, without this assumption, an adversary may be able to
generates more sites than the honest nodes, even with less available hashing power.

3 Average Number of Tips and Confirmation Time

In this section we study the average number of tips depending on the rate of arrival of new
sites. In this section, like in previous analysis [7], we assume that tip selection algorithm is
the simple uniform random tip selection that selects two tips uniformly at random.

We denote by N(t) the number of tips at time t and λ(t) the number of sites issued at
time t. Like previously, we assume λ(t) follows a Poisson distribution of parameter λ. Each
new site confirms two tips and we denote by C(t) the number of tips confirmed at time t.
We have:

N(t) = N(t− 1) + λ(t)− C(t).

We say we are in state N ≤ 1 if there are N tips at time t. Then, the number of tips at
each round is a Markov chain (N(t))t≥0 with an infinite number of states [1,∞). To find
the probability of transition between two states (given in Lemma 5) we first calculate the
probability of transition when the number of new site is known.
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I Lemma 4. If the number of tips is N and k new sites are issued, then the probability
P
N
k→N ′

of having N ′ tips in the next round is:

P
N
k→N ′

= N !
N2k(N ′ − k)!

{
2k

N −N ′ + k

}
where

{
a
b

}
denotes the Stirling number of the second kind S(a, b).

Proof. If k new sites are issued, then there are up to 2k sites that are confirmed. This can
be seen as a “balls into bins” problem [4] with 2k balls thrown into N bins, and the goal is
to see how many bins are not empty i.e. how many unique sites are confirmed.

First, there are N2k possible outcome for this experience so the probability of a particular
configuration is 1

N2k . The number of ways we can obtain exactly C = N −N ′ + k non empty
bins, or confirmed transaction (so that there are exactly N ′ tips afterward) is the number of
ways we can partition a set of 2k elements into C parts times the number of ways we can
select C bins, in a given order, to receive those C parts (also known as the C-permutations
of 2k).

The first number is called the Stirling number of the second kind and is denoted by{ 2k
N−N ′+k

}
. The second number is N !

(N ′−k)! . J

Then, the probability of transition is a direct consequence of the previous lemma

I Lemma 5. The probability of transition from N to N ′ is

PN→N ′ =
N ′∑

k=|N ′−N |

P(Λ = k)P
N
k→N ′

=
N ′∑

k=|N ′−N |

N !λke−λ

N2k(N ′ − k)!k!

{
2k

N −N ′ + k

}
.

Proof. We just have to observe that the probability of transition from N to N ′ is null if the
number of new sites is smaller than N −N ′ (because each new site can decrease the number
of tips by at most one), smaller than N ′ −N (because each site can increase the number of
tips by at most one), or greater than N ′ (because each new site is a tip). J

I Lemma 6. The Markov chain (N(t))t≥0 has a positive stationary distribution π.

Proof. First, it is clear that (N(t))t≥0 is aperiodic and irreducible because for any state
N > 0, resp. N > 1, there is a non-null probability to move to state N + 1, resp. to state
N − 1. Since it is irreducible, we only have to find one state that is positive recurrent (i.e.,
that the expectation of the hitting time is finite) to prove that there is a unique positive
stationary state.

For that we can observe that the probability to transition from state N to N ′ > N tends
to 0 when N tends to infinity. Indeed, for a fixed k, we even have that the probability to
decrease the number of tips by k tends to 1:

P
N
k→N−k

= N !
N2k(N − 2k)! = (1− 1

N
)(1− 2

N
) . . . (1− 2k + 1

N
) (1)

lim
N→∞

P
N
k→N−k

= 1 (2)

so that for any ε > 0 there exists a kε such that P(Λ ≥ kε) < ε/2 and from (2) an Nε such
that ∀k < kε, P

N
k→N−k

< ε
2kε . So we obtain:
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ANε =
∑

N ′>N≥Nε

PN→N ′ = P(N(i+ 1) > N(i+ 1) | N(i) ≥ N) (3)

< P(Λ ≥ kε) +
∑
k<kε

P
N
k→N−k

(4)

< ε (5)

so that the probability AN to “move away” from states [1, N ] tends to 0 when N tends
to infinity. In fact, it is sufficient to observe that there is a number N1/2 such that the
probability to “move away” from states [1, N1/2] is strictly smaller than 1/2. Indeed, this is
a sufficient condition to have a state in [1, N1/2] that is positive recurrent (one can see this
by looking at a simple random walk in one dimension with a mirror at 0 and a probability
p < 1/2 to move away from 0 by one and (1 − p) to move closer to 0 by 1). From the
irreducibility of (N(t))t≥0, all the states are positive recurrent and the Markov chain admit
a unique stationary distribution π. J

The stationary distribution

The stationary distribution π verifies the formula πN =
∑
i≥1 πiPi→N , which we can use to

approximate it with arbitrary precision. The stationary distribution, for several values of λ
is shown in Figure 2.

When the stationary distribution is known, the average number of tips can be calculated
Navg =

∑
i>0 iπi, and with it the average confirmation time Conf of a tip is simply given

by the fact that, at each round, a proportion λ/Navg of tips are confirmed in average. So
Conf = Navg/λ rounds are expected before a given tip is confirmed. The value of Conf
depending on λ is shown in Figure 3.

With this, we show that Conf converges toward a constant when λ tends to infinity. In
fact, for a large λ, the average confirmation time is approximately 1.26, equivalently, the
average number of tips Navg is 1.26λ. For smaller values of λ, intuitively the time before
first confirmation diverges to infinity and Navg converges to 1.

When λ tends to infinity

When λ tends to infinity, we can compute the exact average expected confirmation time.
When λ is great enough, one can assume the number of tips is well concentrated around its
expectation so that we can do the analysis considering only the expected values. Assume
that λ ∈ N sites are being issued and that there are N tips. Each new site confirms
uniformly at random 2 tips. If tn is the average number of tips confirmed after n sites
have been chosen among the N previous tips, one can prove the following recursive formula
tn = tn−1(1− 1/N) + 1. Thus, in average the λ new sites confirms

t2λ =
2λ−1∑
i=0

(
1− 1

N

)i
= N

(
1−

(
1− 1

N

)2λ
)
.

As we said, in average, every round λ tips should be confirmed, hence t2λ = λ. Which gives
us asymptotically when λ (and N) tends to infinity

exp
(
−2λ
N

)
= 1− λ

N
.
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By using the Lambert function W , the solution to this equation is

N

λ
= 2
W (−2e−2) + 2 ≈ 1.2550009749159754.

Figure 2 Stationary distribution of the number of tips, for different values of λ. For each value
of λ, one can see that the number of tips is really well centered around the average.

Figure 3 Expected number of round before the first confirmation, depending on the arrival rate
of transaction. We see that it tends to 1.26 with λ. Recall that Conf = Navg/λ where Navg refers
to the average number of tips in the stationary state.

4 A Necessary Condition for the Security of the Tangle

A simple attack in any distributed ledger technology is the double spending attack. The
adversary signs and broadcast a transaction to transfer some funds to a seller to buy a good
or a service, and when the seller gives the good (he consider that the transaction is finalized),
the adversary broadcast a transaction that conflicts the first one and broadcast other new
transactions in order to discard the first transaction. When the first transaction is discarded,
the seller is not paid anymore and the funds can be reused by the adversary.
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The original description of our attack of the Tangle is as follow: after the initial transaction
to the seller, the adversary generates the same sites as the honest nodes, forming a sub-DAG
with the same topology as the honest sub-DAG (but including the conflicting transaction).
Having no way to tell the difference between the honest sub-DAG and the adversarial sub-
DAG, the latter will be selected by the honest nodes at some point. This approach may not
work with latency in the network, because the sub-DAG of the adversary is always shorter
than the honest sub-DAG, which is potentially detected by the honest nodes. To counter
this, the adversary can generate a sub-DAG that has not exactly the same topology, but
that has the best possible topology for the tip selection algorithm. The adversary can then
use all its available hashing power to generate this conflicting sub-DAG that will at some
point be selected by the honest nodes.

For this attack we use the fact that a TSA selects two tips that are likely to be selected
by the same algorithm thereafter. For simplicity we captured this with a stronger property:
the existence of a maximal deterministic TSA.

I Definition 7 (maximal deterministic tip selection algorithm). A given TSA T has a maximal
deterministic TSA Tdet if Tdet is a deterministic TSA and for any DAG G, there exists
NG ∈ N such that for all n ∈ N the following property holds:

Let Adet be the extension of G obtained with NG + n executions of Tdet. Let A be an
arbitrary extension of G generated with T of size at most n, conflicting with Adet, and let
G′ = G ∪A ∪Adet. We have:

P(T (G′) ∈ Adet) ≥ 1/2.

Intuitively this means that executing the maximal deterministic TSA generates an extension
this is more likely to be selected by the honest nodes, provided that it contains more sites
than the other extensions. When the assiduous honest majority assumption is not verified,
the adversary can use this maximal deterministic TSA at his advantage.

I Theorem 8. Without the assiduous honest majority assumption, and if the TSA has a
maximal deterministic tip selection, the adversary can discard a transaction that has an
arbitrary cumulative weight and achieve double spending.

Proof. Without the assiduous honest majority assumption, we assume that the adversary can
generate strictly more sites than the honest nodes. Let W be an arbitrary weight. One can
see W has the necessary cumulative weigh a given site should have in order to be considered
final. Let G0 be the common local main DAG of all node at a given round r0. At this round
our adversary can generate two conflicting sites confirming the same pair of parents. One
site a is sent to the honest nodes and the other ā is kept hidden.

The adversary can use Tdet the maximal deterministic TSA of T to generate continuously
(using all its hashing power) sites extending G∪{ā}. While doing so, the honest nodes extend
G ∪ {a} using the standard TSA T . After rW rounds, it can broadcast all the generated
sites to the honest nodes. The adversary can choose rW so that (i) the probability that it
has generated NG more sites than the honest nodes is sufficiently high, and (ii) transaction
a has the target cumulative weight W .

After receiving the adversarial extension, by definition 7, honest nodes will extend the
adversarial sub-DAG with probability greater than 1/2. In expectation, half of the honest
nodes start to consider the adversarial sub-DAG as their main DAG, thus the honest nodes
will naturally converge until they all chose the adversarial sub-DAG as their main DAG,
which discard the transaction a.
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G

Gtips

A

Adet

increase the weight

increase the
# of children

Figure 4 A and Adet are two possible extensions of G. The rectangle site conflicts with all site
in Adet so that when executing the TSA on G ∪ A ∪ Adet, tips either from A or from Adet are
selected. The strategy to construct Adet can be either to increase the number of children of Gtips or
to increase their weight ; both ways are presented here.

If the bandwidth of each channel is limited, then the adversary can start broadcasting
the sites of its conflicting sub-DAG at round rW , at a rate two times greater than the honest
nodes. This avoids congestion, and at round rW + rW /2 all the adversarial sub-DAG is
successfully received by the honest nodes. Due to this additional latency, the number of sites
in the honest sub-DAG might still be greater than the number of sites in the adversarial sub-
DAG, so the adversary continues to generate and to broadcast sites extending its conflicting
sub-DAG and at round at most 2rW , the adversarial extension of G received by the honest
nodes has a higher number of sites than the honest extension.

So the same property is true while avoiding the congestion problem. J

Now that we have our main theorem, we show that any TSA defined in previous work
(especially in the Tangle white paper [7]) has a corresponding maximal deterministic TSA.
To do so we can see that to increase the probability for the adversarial sub-DAG to be
selected, the extension of a DAG G obtained by the maximal deterministic TSA should either
increase the weight or the number of direct children of the tips of G as shown in Figure 4.
We now prove that the three TSA presented in the Tangle white paper [7], (i) the random tip
selection, (ii) the MCMC algorithm and (iii) the Logarithmic MCMC algorithm, all have a
maximal deterministic TSA, which implies that the assiduous honest majority assumption is
necessary when using them (recall that we do not study the sufficiency of this assumption).

4.1 The Uniform Random Tip Selection Algorithm
The uniform random tip selection algorithm is the simplest to implement and the easiest to
attack. Since it chooses the two tips uniformly at random, an attacker just have to generate
more tips than the honest nodes in order to increase the probability to have one of its
tips selected.

I Lemma 9. The Random TSA has a maximal deterministic TSA.

Proof. For a given DAG G the maximal deterministic Tdet always chooses as parents one of
the l tips of G. So that, after n+ l newly added sites Adet, the tips of G ∪Adet are exactly
Adet and no other extension of G of size n can produce more than n + l tips so that the
probability that the random TSA select a tip from Adet is at least 1/2. J
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I Corollary 10. Without the assiduous honest majority assumption, the Tangle with the
Random TSA is susceptible to double-spending attack.

4.2 The MCMC Algorithm

The MCMC algorithm is more complex than the random TSA. It starts by initially putting
a fixed number of walkers on the local DAG. Each walker performs a random walk towards
the tips of the DAG with a probabilistic transition function that depends on the cumulative
weight of the site it is located to and its children. In more details, a walker at a site v has a
probability pv,u to move to a child u with

pv,u = exp(−α(w(v)− w(u)))∑
c∈Cv exp(−α(w(v)− w(c)) (6)

where the set Cv is the children of v, and α > 0 is a parameter of the algorithm.
The question to answer in order to find the maximal deterministic TSA of MCMC

algorithm is: what is the best way to extend a site v to maximize the probability that the
MCMC walker chooses our sites instead of another site. The following Lemma shows that
the number of children is an important factor. This number depends on the value α. Indeed
the following lemma states that if a site v has constant number Cα of children of weight n,
then an MCMC walker at v has a probability at least 1/2 to move to one of those children,
even if we add n other sites to the tangle.

I Lemma 11. There exists a constant Cα such that, if an MCMC walker is at an arbitrary
site v that has Cα children of weight n, then, when extending v with an arbitrary set of sites
H of size n, the probability that the walker moves to H is at most 1/2.

Proof. When extending v with n sites, one can choose the number h of direct children, and
then how the other sites extends those children. There are several ways to extends those
children which changes their weights w1, w2, . . . , wh. The probability pH for a MCMC walker
to move to H is calculated in the following way:

SH =
h∑
1
exp(−α(W − wi))

SH = Cαexp(−α(W − n))
S = SH + SH

pH = SH/S.

The greater the weight the greater the probability pH . Adding more children, might
reduce their weights (since H contains only n sites). For a given number of children h, there
are several way to extends those children, but we can arrange them so that each weight is at
least n − h + 1 by forming a chain of length n − h and by connecting the children to the
chain with a perfect binary tree. The height li of a children i gives it more weight. So that
we have wi = n− h+ li. A property of a perfect binary tree is that

∑h
1 2li = 1. We will show

there is a constant Cα such that for any h and any l1, . . . , lh, with
∑h

1 2li = 1, we have
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SH ≥ SH

Cα exp(−α(W − n)) ≥
h∑
i=1

exp(−α(W − wi))

Cα ≥
h∑
i=1

exp(−α(h− li)). (7)

Surprisingly, one can observe that our inequality does not depend on n, so that the same is
true when we arrange the sites when extending a site v in order to increase the probability
for the walker to select our sites.

Let fh : (l1, . . . , lh) 7→ e−αh
∑h

1 exp(αli). So the goal is to find an upper bound for the
function fh that depends only on α.

The function fh is convex (as a sum of convex functions), so the maximum is on the
boundary of the domain, which is either

(l1, . . . , lh) = (1, 2, . . . , h)

or

(l1, . . . , lh) = (dlog(h)e, . . . , dlog(h)e, blog(h)c, . . . , blog(h)c).

For simplicity, let assume that h is a power of two so that the second case is just ∀i, li = log(h).
In the first case we have

fh(1, . . . , h) = exp(−αh)exp(α(h+ 1))− exp(−α)
exp(−α)− 1 = exp(α)− exp(−α(h+ 1))

exp(−α)− 1

which tends to 0 when h tends infinity, so it admits a maximum C1
α.

In the second case, we have

fh(1, . . . , h) = exp(−αh)h exp(α log(h))

which again tends to 0 when h tends infinity, so it admits a maximum C2
α By choosing

Cα = max(C1
α, C

2
α) we have the inequality (7) for any value of h. J

I Lemma 12. The MCMC tip selection has a maximal deterministic TSA.

Proof. Let G be a conflict-free DAG with tips Gtips.
Let T be the number of tips times the number Cα defined in Lemma 11. The T first

executions of Tdet select a site from Gtips (as both parents) until each site from Gtips has
exactly Cα children.

The next executions of Tdet selects two arbitrary tips (different if possible). After T
executions, only one tip remains and the newly added sites form a chain.

Let NG = 2T . NG is a constant that depends only on α and on G. After NG + n added
sites, each site in Gtips has a Cα children with weight at least n. Thus, by Lemma 11, a
MCMC walker located at a site v ∈ Gtips moves to our extension with probability at least
1/2. Since this is true for all sites in Gtips and Gtips is a cut. All MCMC walker will end up
in Adet with probability at least 1/2. J
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One can argue that this is not optimal and we could have improved the construction
of the extension to reduce the number of sites, but we are mostly interested here in the
existence of such a construction. Indeed, in practice, the probability for a walker to move to
our extension would be higher as the honest sub-DAG A is not arbitrary, but generated with
the TSA. Our analysis shows that even in the worst configuration, the adversary can still
generate an extension with a good probability of being selected.

I Corollary 13. Without the assiduous honest majority assumption, the Tangle with the
MCMC TSA is susceptible to double-spending attack.

4.3 The Logarithmic MCMC Algorithm
In the Tangle white paper, it is suggested that the MCMC probabilistic transition function
can be defined with the function h 7→ h−α = exp(−α ln(h)). In more details, a walker at a
site v has a probability pv,u to move to a child u with

pv,u = (w(v)− w(u))−α∑
c∈Cv (w(v)− w(c))−α (8)

where the set Cv is the children of v, and α > 0 is a parameter of the algorithm. The IOTA
implementation currently uses this function with α = 3.

With this transition function, the number of children is more important than their weight.

I Lemma 14. The logarithmic MCMC tip selection has a maximal deterministic TSA.

Proof. Let G be a conflict-free DAG with tips Gtips and T be the number of tips. We
construct Tdet in the following way. Tdet always selects two sites from Gtips in a round-robin
manner. After kT executions (k ∈ N), each site from Gtips has 2k children.

Let n be the number of sites generated with Tdet. Let v ∈ Gtips. We have that the
number of children of v generated by Tdet is Cdet = 2n/T (for simplicity we assume that T
divides 2n). Let A be an arbitrary extension of G of size n and Cv be the number of children
of v that are in A.

With w(v) the weight of v and u = argmaxx∈Aw(x) the child in A with maximum weight,
we have that w(v) ≤ 2n and Cdet ≤ w(v) − w(u). Let p be the probability that a walker
located at v chooses a site generated by Tdet. We have

p ≥ Cdet(w(v)− 1)−α

Cv(w(v)− w(u))−α + Cdet(w(v)− 1)−α = 1
Cv(w(v)−w(u))−α
Cdet(w(v)−1)−α + 1

.

Then

Cv(w(v)− w(u))−α

Cdet(w(v)− 1)−α ≤ Cv(Cdet)−α

Cdet(2n)−α = CvT
α

Cdet
= Cv

2nT 1−α .

With T a constant and Cv bounded (by Property 1), we have that the last fraction tends to
0, and thus p tends to 1, as n tends to infinity. This is true for each site of Gtips, so after a
given number of generated site NG, the probability that a LMCMC walker located at any
site of Gtips moves to a site generated by by Tdet is greater than 1/2. J

I Corollary 15. Without the assiduous honest majority assumption, the Tangle with the
Logarithmic MCMC TSA is susceptible to double-spending attack.



Q. Bramas 8:15

5 Conclusion

We presented a model to analyze the Tangle and we used it to study the average confirmation
time and the average number of unconfirmed transactions over the time.

Then, we defined the notion of assiduous honest majority that captures the fact that the
honest nodes have more hashing power than the adversarial nodes and that all this hashing
power is constantly used to create transactions. We proved that for any tip selection algorithm
that has a maximal deterministic tip selection (which is the case for all currently known
TSA), the assiduous honest majority assumption is necessary to prevent a double-spending
attack on the Tangle.

Our analysis shows that honest nodes cannot stay at rest, and should be continuously
signing transactions (even empty ones) to increase the weight of their local main sub-DAG.
If not, their available hashing power cannot be used to measure the security of the protocol,
like we see for the Bitcoin protocol. Indeed, having a huge number of honest nodes with a
very large amount of hashing power cannot prevent an adversary from attacking the Tangle
if the honest nodes are not using this hashing power. This conclusion may seem intuitive,
but the fact that it is true for all tip selection algorithms (that have a deterministic maximal
TSA) is something new that has not been proved before.
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Abstract
The Ethereum blockchain has gained popularity for its ability to implement Initial Coin Offerings
(ICOs), whereby a buyer enters a market order agreement with a seller in order to purchase
cryptographic tokens at an agreed price. The popularity of ICOs in 2017 has created an increasingly
adversarial environment among potential buyers, who compete for what is often a fixed supply of
tokens offered for a limited period of time.

We study the impact of a series of ICOs in order to understand the relationship between
transaction fees, throughput and latency in Ethereum. Our analysis considers the effects on both
Ethereum’s service providers, known as miners, and users who issue transactions in the network.
Our results show that while buyers incentivise miners generously to include their transactions during
ICOs, the latency of these transactions is predominantly determined by the levels of supply and
demand in the network.
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1 Introduction

An Initial Coin Offering (ICO), which typically consists of offering a fixed quantity of
securities at a discounted price for a limited time, has popularized the use of the Ethereum
blockchain [21]. Today, Ethereum is the second largest blockchain in terms of market
capitalization after Bitcoin [14]. In Ethereum, the notion of gas was introduced in part for
the need to incentivise miners to include, in the blocks they create, transactions of varying
computational complexity [2]. Transactions may invoke smart contracts that allow a buyer
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and seller to transfer tokens at an agreed upon price expressed in Ether (Eth), the native
token of Ethereum. This mechanism was used to raise more than $20B throughout 2017
and 2018.1

Research has revealed that in Bitcoin, the higher the fee users are willing to pay to the
miners for including their transactions, the faster these transactions are included in the
blockchain [13]. Interestingly, applying the same strategy in Ethereum could potentially
lead to front running, the act of “entering into an equity trade, options or futures contracts
with advance knowledge of a block transaction that will influence the price of the underlying
security to capitalize on the trade”2. A recent study which considered over 3 months worth
of Ethereum transactions has shown that most take more than 3 minutes to be included [20],
which is long enough to expose pending transactions to the risk of front running by way of
issuing a similar transaction with a larger fee. However, it remains unclear whether transaction
fees significantly impact the likelihood of successfully purchasing tokens during an ICO.

In this paper, we study this question empirically, first showing that during popular ICOs
some participants are paying significantly higher fees. To begin, we retrospectively analyse
the revenue and costs of the mining process during the ICO for the Basic Attention Token
(BAT), where the entire supply of available tokens was sold in less than 30 seconds for $35M.
During this ICO, participants paid on average more than 300× the average fee, providing
rewards for miners that were orders of magnitude higher than the additional mining costs
incurred during the ICO. These findings support our hypothesis that participants are willing
to have their transactions included faster than others in the blockchain to ensure they
could purchase tokens. More specifically, we measured the time it takes for transactions
to be included in Ethereum’s blockchain depending on their associated fees. Although we
confirm our hypothesis that the fee of a transaction is inversely correlated to the latency, the
correlation is surprisingly low, indicating that during the observed period, transaction fees
were not a successful mechanism for front running in Ethereum. This observation, however,
does not explain the large discrepancy in transaction latency we observed during this ICO.

To explain this discrepancy, we conducted a thorough analysis of transaction latency on
the Ethereum blockchain for a period of 24 days in 2017, which included 19 ICOs, notably
TenX and Tezos, that raised altogether more than $700M. By combining our analysis of the
fees with the block gas limits in Ethereum, we identified other factors that contribute to the
latency of a transaction. In particular, we observed that service demand was greater than
the supply, which dramatically raises the latency of some transactions. More precisely, facing
the rising popularity in ICOs, the volume of transactions issued exceeded the capability of
the service. Then we also observed that, in mid-2017, when the Ethereum gas limit was
increased, the capability of the service also increased. To conclude, this capacity analysis
revealed that the effect of transaction fees were insignificant due to the high service demand.

The rest of the paper is organised as follows. Section 2 describes the important concepts
about ICOs and the Ethereum blockchain. Section 3 illustrates the tremendous increase in
Ethereum transaction fees during a successful ICO. Section 4 correlates the increased transac-
tion fees with the latency of transaction. Section 5 indicates how the supply and demand of
the service impacts latency. Finally, Section 6 lists the related work and Section 7 concludes.

1 https://cointelegraph.com/news/ico-market-2018-vs-2017-trends-capitalization-
localization-industries-success-rate.

2 https://www.nasdaq.com/investing/glossary/f/front-running.

https://cointelegraph.com/news/ico-market-2018-vs-2017-trends-capitalization-localization-industries-success-rate
https://cointelegraph.com/news/ico-market-2018-vs-2017-trends-capitalization-localization-industries-success-rate
https://www.nasdaq.com/investing/glossary/f/front-running
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2 Background

A blockchain is a chain of blocks distributed among multiple participating nodes, where
miners create blocks to include transactions issued by any participating client node [14]. In
proof-of-work blockchains, miners solve a computationally intensive cryptographic problem
to prove that their block is legitimate.

2.1 Initial coin offering
An Initial Coin Offering (ICO) is a method of raising funds through a blockchain system
for mostly blockchain related projects. Ethereum, being the largest blockchain with the
ability to conduct ICOs, has experienced hundreds of ICOs in 2017 alone [17]. ICOs are an
attractive alternative to other early stage funding processes such as Venture Capital, because
they circumvent many of the legal and regulatory requirements and facilitate individuals’
participation. Projects are often able to raise significantly more capital through an ICO than
is possible with traditional approaches. We focus our study on Ethereum.

2.2 Mining in Ethereum
Miners participating in the Ethereum network run the Ethereum Virtual Machine (EVM)
which executes smart contracts. Unlike transactions in Bitcoin, Ethereum transactions can
invoke arbitrarily complex functions through smart contracts. This increased functionality
requires the protocol to measure the amount of computation each transaction performs for
two reasons [2]. First, a miner needs to be able to determine ahead of time whether the
transaction they are about to execute will ever finish. Second, there needs to be a mechanism
for users to incentivise miners to include computationally intensive transactions. This is
why Ethereum uses the concept of gas, whose unit represents one computational step in
the EVM – all the opcodes in the EVM have a cost measured in gas. Every transaction in
Ethereum must include both the gas limit, which is the maximum amount of gas that can
be used executing the transaction and the gas price, which is the price, measured in Wei
(1 Eth = 1018Wei), that the sender will pay per unit of gas. If the transaction execution is
not finished after the gas limit is reached, the EVM will abort the transaction and revert
any state changes. Hence the fee in Ether associated with transaction t in Ethereum is:

feet = gas-price × gas-used(t)
1018 .

The Ethereum mining algorithm is Ethash, which is a memory hard algorithm designed
to reduce the level of centralisation risks compared to Bitcoin’s Hashcash algorithm that is
now dominated by centralised pools of Application Specific Integrated Circuits (ASICs).

2.3 Incentives
When a block is created in Ethereum, the miner of the block can vote to increase, decrease
or maintain the total gas limit of the next block. This allows the maximum throughput of
Ethereum to adjust over time with the capabilities of the miners. The miner of a block b in
Ethereum receives 5 Ether plus the sum of the fees for all transactions included in b:

rewardb = 5 +
∑
∀t∈b

feet.

Tokenomics 2019
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Ideally, the miner will include as many transactions as they can (up to the gas limit of the
block). However, the block reward usually exceeds the marginal increase in revenue that is
gained from including more transactions, since the miner must restart the process each time
it includes new transactions (as the block content changes). The primary incentive for the
miner is the block reward, rather than the fees gained from filling the block. This becomes a
problem when the number of transactions issued starts to approach the maximum theoretical
throughput [13].

3 The Basic Attention Token ICO

In this section we study the impact of an ICO that raised $35M in less than 30 seconds on
31st of May 2017 on the Ethereum economy. We show that the Basic Attention Token (BAT)
ICO impacted the relationship between mining revenues and costs.

This experiment extends the research of Möser and Böhme [13] to the context of Ethereum,
considering the impact of impatient users on mining revenue and costs. We find that high
demand for the network could create an inequitable environment for Ethereum users. These
findings serve as motivation for our study of transaction latency, presented in Section 4.

3.1 Experimental settings
This experiment studies the transactions confirmed by the Ethereum network during the
BAT ICO on the 31st of May 2017, that started with block 3798640 and ended with block
3798642. The data was obtained from the block explorer Etherchain which provides a public
API for Ethereum block and transaction data [8]. Data was gathered for a total of 10003
blocks, which includes 5000 before the BAT sale and 5000 after. This number represents
roughly one day before and one day after the sale in order to approximate average network
conditions, so that the effect of the BAT ICO can be effectively quantified.

3.2 Mining revenue
The analysis compares the average of a variety of metrics in the period directly before and
after the BAT ICO with those observed between blocks 3798640 and 3798642.

Table 1 Average statistics vs. BAT blocks.

Average Block 3798640 Block 3798641 Block 3798642

Total Block Fee (Eth) 0.08 28.05 35.29 12.14
Total Block Size (Bytes) 6952 10359 9479 5403
Tx (Per Block) 39 85 42 42
Gas Used (Per Block) 2247441 4313308 4262947 4326224

Table 1 compares metrics observed in the three BAT blocks to the cumulative averages
for these metrics recorded before and after. We can see that the average transaction fee per
block recorded over the period (excluding the BAT ICO) was 0.08 Ether, 314.5× lower than
during the ICO.

In Figure 1(left) we plot the total block fees for each block in the dataset. The impact of
the BAT ICO on mining revenue is immediately evident. The log scale used on the y-axis
is needed to represent an increase of hundreds of times the average fees per block, with a
noticeable residual effect in the blocks that immediately followed the ICO. We now show
that this level of mining revenue is not proportional to the increased cost incurred by the
miners of these blocks or reflected in the performance of the network.
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Figure 1 Total fees per block and rolling average of last 10 blocks around the BAT ICO.

The first and second blocks of the BAT sale were 49% and 36% larger than the average
block size before and after the ICO, respectively. However, the final BAT block was smaller
than the average block size over the period. So, while on aggregate the raw size of the blocks
appended by miners during the BAT ICO increased, it was insignificant compared to the
increase in revenue. The next metric considered is the number of transactions per block,
which reveals the achieved throughput of the network. While the first BAT block recorded
twice as many transactions than the average, the other two BAT blocks were close to the
average, showing that the network did not provide any significant improvement in throughput
during the BAT ICO.

The most appropriate proxy for the computational effort expended by mining is gas used
per block. This is because the EVM performs transactions of arbitrary complexity and gas
is used to measure the total computational demand of the transaction. The BAT blocks
consumed almost twice as much gas as an average block over the period.

Figure 1 (right) depicts a rolling average of gas used in the last 10 blocks. It reveals that
around the BAT ICO, the majority of blocks mined were close to the gas limit. This indicates
that, although neither block size or throughput increased significantly, the computational
work performed by the miners was significantly higher than any other period in the sample.

3.3 Users pay substantial transaction fees during an ICO
Analysing the mining environment around the BAT ICO shows that during periods of high
demand in Ethereum, some users are willing to pay massive transaction fees in order to have
their transactions included quickly. Consequently, the miners of the BAT blocks received a
total block reward that was much larger than usual over the period. In contrast, while the
computational costs associated with the mining environment increased, they were insignificant
compared to the change in revenue.

This experiment has revealed the actions of impatient users when there is an excessive
demand to transact. We hypothesize that due to the fees shown in Figure 1, many users
attempting to enter the ICO or transacting during this time were negatively impacted due
to miners prioritising high fee transactions first. While in principal it seems fair that high
fee transactions should be prioritised, it raises a question of fairness in blockchains. Wealthy
users could possibly front run the transactions of others by setting a fee that is large enough.

The cost of immediacy in Ethereum is clearly subject to significant variation based on
network activity. This presents a substantial disadvantage to users wishing to transact small
during periods of high activity. Whilst it is possible to quantify the effect of large transaction
fees on mining revenue and environment, we are not able to determine the effect that these
transactions have on other users wishing to transact at a similar time. This observation
serves as motivation to study the latency of transactions in Ethereum, to determine how the
transaction fee impacts the latency of that transaction.

Tokenomics 2019
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4 The Impact of Transaction Fees on Latency

As discussed previously, high transaction fees paid by participants during ICOs could possibly
be motivated by a front running attempt. In this section, we study how successful high
fees are at reducing transaction latency. We start by introducing the concept of transaction
latency before describing our experimental setup and conclude that, as expected, transaction
fee is inversely correlated to the transaction latency, but surprisingly, that this correlation
is negligible.

4.1 Defining transaction latency
We refer to the latency of a transaction t as the time taken for it to be included in a block.
Note that this does not necessarily correspond to the inclusion time of t, as Ethereum cannot
deterministically define the inclusion of a transaction as a number of appended blocks or
confirmations [15].

For the latency of transaction t to be well-defined, the block that includes t must be part of
the canonical blockchain as determined in Ethereum so that blocks that are part of forks are
not considered. Provided that clocks are synchronized, we can say that for some transaction
t, tbroadcast is the timestamp when the transaction t was initially broadcast, tincluded is the
timestamp of the block creation that included t and latencyt = tincluded − tbroadcast, where
tincluded > tbroadcast > 0.

Unfortunately, we will never know the real value of tbroadcast unless the transaction was
issued by a node that we controlled. The reason is that the transaction must propagate
from the originating node through the peer-to-peer network and the clocks are not perfectly
synchronized. We can however approximate latency using the earliest known time for
tbroadcast. Approximating our definition from above, we can say for some transaction t,
treceived is the earliest timestamp when transaction t is received by some of our nodes, hence:

latencyt ≈ tincluded − treceived.

4.2 Experimental settings
For these experiments, we used two datasets: The first dataset, labelled Geth Data, includes
the time at which each transaction was relayed, and the second dataset, labelled Blockchain
Data, includes the time at which each transaction was included.

The Geth Data included the timestamps of a transaction when the transaction was relayed
in Ethereum using the geth client between 2017-06-24 00:00:00 and 2017-07-18 00:00:00.
This period includes 19 ICOs: Dao.casino (BET), Pillar (PLR), Mothership (MSP), Blocktix
(TIX), TrueFlip (TFL), EOS (EOS), Binance Coin (BNB), InsureX (IXT), CoinDash (CDT),
Press.One (PRS), Tezos (XTZ), Nimiq (NET), Polybius (PLBT), Rialto (XRL), Santiment
(SAN), Starta (STA), OpenANX (OAX), OmiseGO (OMG), EncryptoTel (ETT) that raised
a total of more than $700M [17]. Each time a node received a transaction, it recorded the
transaction hash, the treceived timestamp, and the IP address of the node that relayed the
transaction. This dataset contained 66,472,214 transactions, which is significantly larger
than the actual number of transactions included in the blockchain for that period. There are
two reasons for this. Firstly, this dataset contained many duplicates of the same transaction
as transactions are relayed multiple times in Ethereum. Secondly, this dataset included many
transactions that were either never included in a block or part of a fork and not visibly
included in the blockchain.
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The Blockchain Data were obtained via the blockchain company Infura. They provide
a publicly accessible interface to the internal API of a geth node. Using this service, we
extracted transaction and block data from the Ethereum blockchain for a 24-day period
between 24/06/17 00:00:00 - 18/07/17 00:00:00.

In order to determine transaction latency, the datasets were combined by removing
duplicate transactions and selecting only the earliest of these timestamps from the Geth Data
and matching, using its hash, each transaction in the Blockchain Data to the transaction in
the Geth Data.

4.3 The significant variation of latency depending on request time
Figure 2 (left) plots the latency of every transaction committed in the Ethereum blockchain
throughout the period observed. Note that the y-axis uses a log scale, indicating that the
latency of a transaction varies exponentially depending on the time it was issued. This
variation provides a disappointing initial impression of performance. Ideally, latency would
not vary by orders of magnitude and should be independent of the time when the transaction
was issued. It is noteworthy that Figure 2 (left) does not show the distribution of transaction
latency which can give a misleading representation of performance due to outliers.

Figure 2 Ethereum transaction latency and empirical cumulative distribution function.

Table 2 shows that the median transaction latency observed was 22.13 seconds. Consider
that the average block time for the period was 17.63 seconds. This means that over half of
all transactions issued at depth i in the blockchain were included by the block at depth i + 2.
This observation significantly improves the initial impression given by Figure 2. However,
while median performance is strong, the peaks that are seen in Figure 2 (left) are also
quantified in the table. The latency data is extremely positively skewed above the 90th
percentile.

Table 2 Ethereum transaction latency distribution.

Percentile 10 25 50 75 90 95 99
Latency (seconds) 2.81 8.40 22.13 54.51 158.83 379.22 2854.31

Figure 2 (right) depicts the empirical cumulative distribution function obtained from the
empirical study in order to visualise the skew of the latency data. This chart shows there is
a point of inflexion in the distribution of latency around the 90th percentile.

The distribution of transaction latency poses an obvious question, why does the shape
of the curve changes drastically above the 90th percentile. In other words, what is different
about this group of transactions that makes them take significantly longer to be included in
a block?

Tokenomics 2019
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4.4 On the minor impact of transaction fees on latency
The first thing to consider when attempting to explain latency is the transaction fee. All
transactions in Ethereum specify a gas price, representing the price the user is willing to pay
the miner for each computational step. Since the gas price is at the discretion of the user,
perhaps the shape of the data can be explained by the transaction fee. If the gas price is
too low, the total transaction fee may not provide enough of an incentive for the miner to
include it. In order to examine this hypothesis, we compare the fees paid by transactions
that are in the fastest 90% (latency < 158.83 seconds) with the fees paid by transactions in
the slowest 10% (latency > 158.83 seconds).

Table 3 Comparison of fee distribution between fastest and slowest transactions.

25 50 75 90 95 99
Fastest 90% of latency (majority) 5.0014 1.2715 3.9015 8.0015 1.1416 3.1516

Slowest 10% of latency (outliers) 6.6014 1.8015 3.1615 5.1015 8.0016 3.3016

Table 3 shows that the transaction fees paid by the slow outliers are generally higher
than in the fast group, except for the 75th and 90th percentiles. This means that these
transactions were generally paying a higher fee but experiencing substantially worse latency.
Initially, these results seemed counterintuitive. We know that users in a blockchain expect
their latency to be correlated with the transaction fee they pay, but these results challenge
this assumption. We thus calculated the covariance between the fee and the latency and
obtain: covariance(fee, latency) = −1.453 × 1017.

From the covariance we can derive that there is a negative correlation between fee and
latency, indicating, as we expect, that the fee is inversely related to the latency:

correlation(fee, latency) = −0.0001606.

This correlation suggests however that there is very little causal relationship between
the transaction fee and latency. Recall that transaction fees in blockchains are supposed
to allow a user to incentivise the miner of a block to include a transaction. This statistic
challenged the common assumption of users in a blockchain that they can significantly impact
the latency of their transaction through the level of the transaction fee.

5 The Impact of Supply and Demand on Latency

The weak correlation between fee and latency raises the question of what is the dominant
factor in determining transaction latency. In this section, we study the relation between
the supply and demand and how it affects latency. In particular, we study the Ethereum
blockchain over the same period as the transactions were issued, where supply increased
significantly and deduce the relationship between supply, demand and latency.

5.1 Supply side – gas limit
We are trying to explain why some transactions take significantly longer to be included
than others. Our first attempt considering only transaction fees did not only fail to do
so, it suggested that the fee itself may be insignificant. In order to try understand these
strange results, we now consider the theoretical bounds of the Ethereum network. Recall
that in proof-of-work blockchains the only way transactions are included is when a new
block is mined:

capacity-throughput = block-gas-limit
block-interval .
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The maximum number of transactions able to be included in a block is determined by
the gas limit, since the Ethereum protocol targets a constant block interval by modifying
the difficulty of proof-of-work. In particular, Ethereum’s yellow paper [21] states the
gas limit Hl of the block must satisfy the following relation: Hl < P (H)Hl

+ P (H)Hl

1024 ,
Hl > P (H)Hl

+ P (H)Hl

1024 , where P (H)Hl
is the gas limit of the parent block. This mechanism

was designed to allow the gas limit to evolve slowly over time to adapt to changes in the
mining environment [21]. By allowing each miner to vote independently of one another,
Ethereum attempts to avoid some of the centralisation risks in mining by ensuring larger
miners are unable to quickly change the gas limit and therefore exclude smaller miners. In
effect, Ethereum deliberately makes the gas limit inflexible over shorter periods of time.
This means that at any single point in time, Ethereum effectively has a constant maximum
throughput. Below we define the maximum number of transactions that can be committed
per minute in Ethereum.

We start by taking the median transaction size observed in the study:
Median Transaction Gas = 90,000. We can then approximate the maximum number of
transactions per block b in terms of the gas limit and median transaction size:

max-transactionsb = block-gas-limit/90000. (1)

The average block interval throughout the study allows us to determine the
Average Block Time = 17.63 seconds, and Blocks (Per Minute) = 3.40. Finally, we can de-
rive an approximation for the maximum number of transactions that can be included per
minute: capacity-throughput = 3.4 × gas-limit/90000 transactions/minute.

5.2 Raising the gas limit
Before substituting the gas limit we need, however, to consider a significant event that
occurred throughout the study.

06-23     06-26   06-29     07-02    07-05      07-08    07-11    07-14     07-17

6500000

6000000

5500000

5000000

Figure 3 Ethereum block gas limit.

While it was explained that over the short term the gas limit can change only slightly,
there was a significant shift observed during the study, shown in Figure 3. On the 29th
of June 2017 miners in Ethereum began consistently voting up the gas limit to alleviate

Tokenomics 2019



9:10 The Impact of Ethereum Throughput and Fees on Transaction Latency During ICOs

congestion from the increased demand being placed on the network. The result was that the
gas limit increased by about 43%. Revising our earlier definition, we can include the average
gas limit for each day in the study

block-gas-limit =


4711978 if Date < 29 June 2017,

5348530 if Date = 29 June 2017,

6711349 if Date > 30 June 2017.

Substituting these block gas limits into Eq. (1) yields the following bounds for the
maximum number of transactions that can be committed per minute in Ethereum:

capacity-throughput =


178 if Date < 29 June 2017,

202 if Date = 29 June 2017,

253 if Date > 30 June 2017.

We now have approximated how many transactions can be included per minute given
the relevant gas limit. Essentially these results mean that for the given day, if the number
of transactions issued per minute is below the threshold, there should be a strong causal
relationship between the transaction fee and the latency. However, it is now necessary to
determine the demand placed on the network each minute in order to see the imbalances
that occur between demand and supply.

5.3 Demand side – dynamic fluctuations

The Ethereum network has been live since July 30 2015, but there has been a significant
increase in popularity of blockchains and cryptocurrency in 2017. This can be seen on the
Etherscan website that shows the number of transactions per day, growing from under 50,000
in early 2017 to over 300,000 during the study [9]. Compounding this increased demand
has been the hundreds of ICO on Ethereum on the first half of 2017. Throughout the study
there were several significant ICOs such as TenX on the 24th of June, which raised 200,000
Ether in around 7 minutes [17].

Figure 4 depicts the number of transactions issued per minute from June to the beginning
of July 2017. It appears that there are many minutes where the number of transactions
issued significantly exceeds the maximum throughput achievable at that point in time, as
discussed in the previous section.

Table 4 Distribution of transactions per minute.

Percentile 25 50 75 90 95 99
Transactions (Per Minute) 130 161 199 244 286 684

Table 4 shows the distribution of this data. Recall that 253 is the maximum possible
number of transactions that could be committed per minute after the gas limit raise. This
means that almost 10% of the time there were more transactions being issued than could be
committed. This statistic is very closely aligned with the empirical cumulative distribution
graph of latency in Figure 2 (right), with the shape of that graph changing sharply at the
90th percentile.
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Figure 4 Ethereum transactions issued per minute.

5.4 Median latency per minute
With the understanding of the relationship between demand and supply in Ethereum, we
now revisit the latency results. Figure 5 shows the median transaction latency per minute in
Ethereum during the period. This graph confirms our initial observation that the Ethereum
blockchain typically confirms transactions within approximately 2 blocks. However, as a
consequence of rapid fluctuations in demand and a relatively static supply, there are noticeable
periods where median latency increases exponentially.
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Figure 5 Ethereum transaction median latency per minute.

Table 5 Distribution of median latency per minute.

Percentile 25 50 75 90 95 99
Median Latency (Per Minute) 12.07 19.22 33.88 60.48 87.17 294.47

To recap, we have demonstrated that in Ethereum, the demand is constantly changing and
hard to predict, but the supply (how many transactions can be included in the blockchain) is
relatively static. This is one of the fundamental performance challenges for Ethereum. The
effects of this problem on the users of the blockchain have been relatively insignificant until
2017 where the number of users participating in Ethereum started increasing rapidly.

Tokenomics 2019
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5.5 Latency vs fee: before and after the gas limit raise

Our work so far has focused on identifying which factors are significant in determining latency
in Ethereum. It appears that the transaction fee becomes insignificant in comparison to the
overall demand and supply of Ethereum. Fortunately in our study there was a noticeable
shift in the gas limit that allows us to analyse the latency vs fee relationship before and after
this shift in supply. Figure 6 indicates that the relationship between fees and latency becomes
more hyperbolic after the increase, representing the effect of increased Ethereum performance
capabilities. The hyperbolic shape more accurately represent the relationship between fee
and latency since our data is asymptotic, neither fee nor latency is ever equal to 0.

0.0        0.5        1.0      1.5        2.0      2.5       3.0

3000

2500

2000

1500

1000

500

00

3000

2500
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1500

1000
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Figure 6 Latency vs fee: before and after the gas limit raise.

6 Related Work

6.1 Proof-of-work and capacity throughput

In a first work [18], Sompolinsky and Zohar analysed the impact that high transaction
throughput levels have on the level of security in the Bitcoin protocol. They analysed
Bitcoin’s longest chain selection method of reaching consensus. Their first contribution was
to show that as transaction throughput increases, structural weaknesses in the longest-chain
approach makes the network vulnerable to attackers with less computational resources [18].

In a subsequent work, Sompolinsky and Zohar [19] propose the Greedy Heaviest-Observed
Sub-Tree (GHOST) consensus algorithm as a means of maintaining the security guarantees
while increasing throughput. GHOST trades the longest-chain principle for selecting the
heaviest subtree at each fork in the chain. This modification ensures that the work performed
by honest nodes is incorporated by the network, even if their blocks do not appear in the
final chain. This modification allows the network to deal with the inevitable increase in forks
that increased throughput levels cause. They show that while GHOST can scale with the
longest-chain algorithm in terms of block creation rate, the primary benefit is a constant
security threshold as opposed to exponential decreases in the longest-chain algorithm [19].
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6.2 Network and capacity throughput
GHOST helps reduce the security vulnerabilities that forks cause. However, forks still
represent a significant weakness in the security of the blockchain as experimented by Natoli
and Gramoli [16]. Fundamentally, the underlying network of the blockchain needs to be
improved in order to reduce the chance of forks and the vulnerabilities that result from it.

Decker and Wattenhofer [6] analysed information propagation throughout the Bitcoin
network in an attempt to determine the primary cause of forks in the blockchain. Their
research focuses primarily on identifying improvements in the way the network communicates,
by modifying the logical structure of the Bitcoin network. Their motivation is to reduce the
number of forks in the blockchain and therefore reduce the decrease in network efficiency
that is caused by forks. They identify three significant improvements to the current method
of propagation in Bitcoin.

They contend that by dividing the block verification process (that occurs when a node
receives a new block) into two components, the initial difficulty check and the validation of
transactions, allows for a significant increase in propagation speed. After a node completes
the difficulty check and hence verifies the proof-of-work, it can retransmit the block to its
peers, before attempting transaction validation. The proposed gain is significant because the
majority of work resides in the validation of transactions, whereas verifying proof-of-work is
a trivial process [1]. They assert that this modification does not increase the risk of malicious
behaviour because producing an invalid block with proof-of-work is just as hard as producing
a valid block.

They also suggest that nodes can immediately forward all incoming messages to other
nodes, even before actually receiving the block, in an attempt to reduce the round trip time
between nodes. While they admit that this does allow an attacker to arbitrarily announce
non-existent blocks, attackers are already able to flood the network with fake transactions,
and therefore there is no reduction in security. Finally, they suggest that the most significant
improvement can be gained by minimising the distance between any two nodes. This can be
done by increasing the number of connections that each node maintains, effectively reducing
the number of times messages need to be relayed between nodes [6].

6.3 Other approaches to increase the capacity throughput
Decker and Wattenhofer note that the above improvements, while valuable, do little to
address what they contend are fundamental structural problems with the network. In a
more recent paper, they put forward an entirely different network structure with duplex
micropayment channels. They claim that this structure allows vastly superior scalability by
deferring to the blockchain for initial setup of a payment channel and conflict resolution,
while handling all transactions through the channel itself [7]. Another piece of work by
Lewenberg, Sompolinsky and Zohar introduces the inclusion of off-chain blocks into the
Bitcoin network. The consequences are similar to that of the GHOST algorithm whereby
increased throughput can be achieved, however they also prove that they payoff for weak
miners is increased [12].

Kiayias and Panagiotakos [11] also consider the tradeoffs between security and speed,
however they extend on the above work by considering multiple blockchains. They introduce
a new generic blockchain property, called chain growth, in order to express the minimum rate
at which chains of honest parties grow. They derive this property as an extension of their
previous work in which they isolate the backbone of the Bitcoin protocol, a useful framework
for analysing blockchain fundamentals [10].
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The underlying issue we identify here is the security-performance tradeoff that has left
blockchains incapable of providing both high security and throughput to its users. Crain et
al. [3] recently designed DBFT, a leader-less consensus algorithm to cope with this tradeoff.
The algorithm is deterministic and does not assume synchrony, hence guaranteeing that no
disagreements can occur, even when the network is behaving badly due to misconfigurations,
natural disasters or attacks. The algorithm is also democratic in that it leverages the
bandwidth of multiple links rather than relying on the classic leader-based design that is
subject to bottlenecks at the leader network interface. The Red Belly Blockchain builds upon
this algorithm and an efficient verification sharding protocol to offer a throughput that keeps
increasing when increasing the number of consensus participants, typically to hundreds of
low-end consensus participant machines [4].

6.4 Transaction fees
Möser and Böhme analyse transaction fees in the Bitcoin blockchain in an attempt to under-
stand the economic and technical components [13]. They examine transactions empirically, in
order to determine how fees change over time, and how impatient users incentivise miners to
include their transactions. They suggest that the instability of fees over time is a consequence
of the protocol failing to provide a mechanism by which users and miners can coordinate to
set fair prices. Interestingly, the paper suggests that this issue is not necessarily dangerous as
long as mining rewards still dominate the composition of income for miners. This statement
raises an interesting question in relation to high throughput which is generally associated
with decreasing block rewards [5]. Some information regarding the relation between gas price
and confirmation time in Ethereum can be found on the publicly available Eth gas station
website3, however, it does not relate this information to the latency of transactions.

7 Conclusion

In this paper, we analysed the parameters that impact transaction latency in Ethereum.
The popularity of ICOs in 2017 has created a competitive environment for users wishing to
purchase tokens. While buyers generously incentivised miners to include their transactions,
the supply and demand of the service was the predominant factor determining latency and
inclusion. For future work, we would like to reproduce the analysis for more recent periods
as the Ethereum protocol and network keep evolving.
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Abstract
In a proof of stake blockchain, validators need to split the rewards gained from transaction fees
each block. Furthermore, these fees must be fairly distributed to each of a validator’s constituent
delegators. Delegators accrue this reward throughout the entire time which they are delegated, and
they have a special operation to withdraw accrued rewards.

The F1 fee distribution scheme works for any algorithm to split fees and inflation between
validators each block, with minimal iteration, and the only approximations being due to finite
decimal precision. Per block there is a single iteration over the validator set, to enable reward
algorithms that differ by validator. No iteration is required to delegate or to withdraw. The state
usage is one state update per validator per block and one state entry per active delegation. F1
can optionally handle arbitrary inflation schemes, auto-bonding of rewards, and varying validator
commission rates.
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1 Introduction

In a proof of stake blockchain, each validator has an associated stake. Transaction fees are
rewarded to validators based on the incentive scheme of the underlying proof of stake model.
However, only rewarding the proposers as in many proof-of-work incentive models causes
incentive problems. See these prior works discussing this problem. [1] [3] This fee distribution
problem occurs in delegated proof-of-stake blockchains, as there is a need to distribute a
validator’s fee rewards and inflation proportionally to its delegators according to amount of
stake each has delegated. The trivial solution of just paying the rewards to each delegator
every block is too expensive to perform on-chain, as it would require reading and writing all
delegator accounts. Instead fee distribution algorithms must require that delegators perform
a withdraw action, which when performed yields the same total amount of fees as if they
had received them at every block.

This paper details F1, an approximation-free, slash-tolerant fee distribution algorithm
which allows validator commission-rates, inflation rates, and fee proportions, which can
all efficiently change per validator, every block. The algorithm requires iterating over the
bonded validators every block, which is cheap due to staking logic already requiring iteration
over all validators, which causes the expensive state-reads to be cached. Withdraws require
no iteration.
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The key point of how F1 works is that it tracks how much rewards a delegator with 1
stake delegated to a given validator would be entitled to if it had bonded at block 0 until
the latest block. When a delegator bonds at block b, the amount of rewards a delegator
with 1 stake would have if bonded at block 0 until block b is also persisted to state. When
the delegator withdraws, they receive the difference of these two values. Since rewards
are distributed according to stake-weighting, this amount of rewards can be scaled by the
amount of stake a delegator had delegated. The following paragraph describes this in more
detail, with a demonstration of equivalence to the inefficient iterative algorithm by reduction.
Section 2 details how to adapt this algorithm to handle commission rates, slashing, inflation,
and auto-bonding of fees.

Base algorithm

In this section, we show that the F1 base algorithm gives each delegator rewards identical to
that which they’d receive in the naive and correct fee distribution algorithm that iterated
over all delegators every block.

Even distribution of a validators rewards amongst its validators weighted by stake means
the following: Suppose a delegator delegates x stake to a validator v at block h. Let the
amount of stake the validator has at block i be si and the amount of fees they receive at this
height be fi. Then if a delegator contributing x stake decides to withdraw at block n, the
rewards they receive are

n∑
i=h

x

si
fi = x

n∑
i=h

fi

si

Note that si does not change every block, it only changes if the validator gets slashed, or
if any delegator alters the amount they have delegated. We’ll relegate handling of slashes
to Subsection 2.2, and only consider the case with no slashing here. We can change the
iteration from being over every block, to instead being over the set of blocks between two
changes in validator v’s total stake. Let each of these set of blocks be called a period. A
new period begins every time that validator’s total stake changes. Let the total amount of
stake for the validator in period p be np. Let Tp be the total fees that validator v accrued in
period p. Let h be the start of period pinit, and height n be the end of pfinal. It follows that

x

n∑
i=h

fi

si
= x

pfinal∑
p=pinit

Tp

np

Let p0 represent the period which begins when the validator first bonds. The central idea
to the F1 model is that at the end of the kth period, the following is stored at a state location
indexable by k:

∑k
i=0

Ti

ni
. Let the index of the current period be f . When a delegator wants

to delegate or withdraw their reward, they first create a new entry in state to end the current
period. Then this entry is created using the previous entry as follows:

Entryf =
f∑

i=0

Ti

ni
=

f−1∑
i=0

Ti

ni
+ Tf

nf
= Entryf−1 + Tf

nf

Where Tf is the fees the validator has accrued in period f , and nf is the validators total
amount of stake in period f .
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The withdrawer’s delegation object has the index k for the period which they ended by
bonding. (They start receiving rewards for period k + 1) The reward they should receive
when withdrawing is:

x

f∑
i=k+1

Ti

ni
= x

((
f∑

i=0

Ti

ni

)
−

(
k∑

i=0

Ti

ni

))
= x (Entryf − Entryk)

It is clear from the equations that this payout mechanism maintains correctness, and
requires no iterations. It just needed the two state reads for these entries.

Tf is a separate variable in state for the amount of fees this validator has accrued since
the last update to its power. This variable is incremented at every block by however much
fees this validator received that block. On the update to the validators power, this variable
is used to create the entry in state at f , and is then reset to 0.

This fee distribution proposal is agnostic to how all of the blocks fees are divied up
between validators. This creates many nice properties, for example it is possible to only
rewarding validators who signed that block.

2 Additional add-ons

2.1 Commission Rates
Commission rates are the idea that a validator can take a fixed x% cut of all of their received
fees, before redistributing evenly to the constituent delegators. This can easily be done
as follows:

In block h a validator receives fh fees. Instead of incrementing that validators “total
accrued fees this period variable” by fh, it is instead incremented by (1−commission_rate)∗
fp. Then commission_rate ∗ fp is deposited directly to the validator’s account. This allows
for efficient updates to a validator’s commission rate every block if desired. More generally,
each validator could have a function which takes their fees as input, and outputs a set of
outputs to pay these fees too. (i.e. x% going to themselves, y% to delegators, z% burnt)

2.2 Slashing
Slashing is distinct from withdrawals, since it lowers the stake of all of the delegator’s by
a fixed percentage. Since no one is charged gas for slashes, a slash cannot iterate over all
delegators. Thus we can no longer just multiply by x over the difference in stake. This section
describes a simple solution that should suffice for most chains needs. An asymptotically
optimal solution is provided in section 2.4.

The solution here is to instead store each period created by a slash in the validators
state. Then when withdrawing, you must iterate over all slashes between when you started
and ended. Suppose you delegated at period 0, a y% slash occured at period 2, and your
withdrawal creates period 4. Then you receive funds from periods 0 to 2 as normal. The
equations for funds you receive for periods 2 to 4 now uses (1− y)x for your stake instead
of just x stake. When there are multiple slashes, you just account for the accumulated
slash factor.

There is a griefing attack[2] a validator can perform on its delegators in this model. The
validator can make itself be slashed “n” times, with a linear increase in the cost to withdraw
for its constituent delegators. It is anticipated that the slashing penalty is sufficiently high
that this won’t be a practical concern.
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2.3 Inflation
Inflation is the idea that we want every staked coin to create more staking tokens as time
progresses. The purpose being to drive down the relative worth of unstaked tokens. Each
block, every staked token should produce x staking tokens as inflation, where x is calculated
from a function inflation which takes state and the block information as input. Let xi

represent the evaluation of inflation in the ith block. The goal of this section is to auto-bond
inflation in the fee distribution model without iteration. This is done by preserving the
invariant that every state entry contains the rewards one would have if they had bonded one
stake at genesis until that corresponding block.

In state a variable should be kept for the number of tokens one would have now due to
inflation, given that they bonded one token at genesis. This is

∏now
0 (1 + xi). Each period

now stores this total inflation product along with what it already stores per-period.
Let Ri be the fee rewards in block i, and ni be the total amount bonded to that validator

in that block. The correct amount of rewards which 1 token at genesis should have now is:

Reward(now) =
now∑
i=0

 i∏
j=0

1 + xj

 ∗ Ri

ni

The term in the sum is the amount of stake one stake becomes due to inflation, multiplied
by the amount of fees per stake.

Now we cast this into the period frame of view. Recall that we build the rewards by
creating a state entry for the rewards of the previous period, and keeping track of the rewards
within this period. Thus we first define the correct amount of rewards for each successive
period, proving correctness of this via induction. We then show that the state entry that
gets efficiently built up block by block is equal to this value for the latest period.

Let start, end denote the start/end of a period.
Suppose that ∀f > 0, Reward(end(f)) is correctly constructed as

Reward(end(f)) = Reward(end(f − 1)) +
end(f)∑

i=start(f)

 i∏
j=0

1 + xj

 Ri

ni

and that for f = 0, Reward(end(0)) = 0. (With period 1 being defined as the period that
has the first bond into it) It must be shown that assuming the supposition ∀f ≤ f0,

Reward(end(f0 + 1)) = Reward(end(f0)) +
end(f0+1)∑

i=start(f0+1)

 i∏
j=0

1 + xj

 Ri

ni

Using the definition of Reward, it follows that:

end(f0+1)∑
i=0

 i∏
j=0

1 + xj

 ∗ Ri

ni
=

end(f0)∑
i=0

 i∏
j=0

1 + xj

 ∗ Ri

ni
+

end(f0+1)∑
i=start(f0+1)

 i∏
j=0

1 + xj

 Ri

ni

Since the first summation on the right hand side is Reward(end(f0)), the supposition is
proven true. Consequently, the reward for just period f adjusted for the amount of inflation
1 token at genesis would produce, is:

end(f)∑
i=start(f)

 i∏
j=0

1 + xj

 Ri

ni
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Note that

end(f)∑
i=start(f)

 i∏
j=0

1 + xj

 Ri

ni
=

end(f−1)∏
j=0

1 + xj

 end(f)∑
i=start(f)

 i∏
j=start(f)

1 + xj

 Ri

ni

By definition of period, and inflation being applied every block,
ni = nstart(f)

(∏i
j=start(f) 1 + xj

)
. This cancels out the product in the summation, therefore

end(f)∑
i=start(f)

 i∏
j=0

1 + xj

 Ri

ni
=

end(f−1)∏
j=0

1 + xj

∑end(f)
i=start(f) Ri

nstart(f)

Thus every block, each validator just has to add the total amount of fees (The Ri term)
that goes to delegates to some per-period term. When creating a new period, nstart(f) can
be cached in state, and the product is already stored in the previous periods state entry. You
then get the next period’s nstart(f) from the consensus’ power entry for this validator. This
is thus extremely efficient per block.

When withdrawing, you take the difference as before, calculating the difference between
the reward entry at the withdrawing height and the bonding height. This yields the
amount of rewards you would have obtained with (

∏begin bonding period
0 1 + x) stake from

the block you began bonding at until now. (
∏begin bonding period

0 1 + x) is known, since
its included in the state entry for when you bonded. You then divide the entitled fees by
(
∏begin bonding period

0 1 + x) to normalize it to being the amount of rewards you’re entitled to
from 1 stake at that block to now. Then as before, you multiply by the amount of stake you
had initially bonded.

In addition to the above, the withdrawer also needs rewards due to inflation itself. This
can be done by taking the accumulated inflation factor, and dividing it by the inflation factor
until the beginning of the bonding period. This factor is (

∏now
begin bonding period 1 + x), and

then that gets scaled by how much they initially bonded.
The inflation function could vary per block, and per validator if ever a need arose. If the

inflation rate is the same for all validators then there can be a single state entry for the entries
corresponding to the product of inflations. Inflation creation can trivially be epoched as long
as inflation isn’t required within the epoch, through changes to the inflation function.

2.4 Withdrawing with no iteration over slashes
Notice that a slash is the same as a negative inflation rate for a validator in one block.
For example a 20% slash is equivalent to a −20% inflation for a validator in a block.
Given correctness of auto-bonding inflation with different inflation rates per-validator, it
follows that handling slashes can be correctly done by simply setting the validators inflation
factor in that block to be the negative of the slash factor. This significantly simplifies the
withdrawal procedure.

2.5 Auto bonding fees
Auto bonding of fees also follows from the correctness of the inflation model. Split up the
rewards into one component with only the staking token, and one component with the remain-
ing tokens. Add to the inflation rate for that block for that validator, amountofstakingtoken

ni
, ni

being the validators stake in that block. Set the rewards to then just be the remaining tokens.
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2.6 Delegation updates
Updating your delegation amount is equivalent to withdrawing earned rewards and a fully
independent new delegation occurring in the same block. The same applies for redelegation.
From the view of fee distribution, partial redelegation is the same as a delegation update
and a new delegation.

3 State Requirements

State entries can be pruned quite effectively. Suppose for the sake of exposition that there is
at most one delegation / withdrawal to a particular validator in any given block. Then each
delegation is responsible for one addition to state. Only the next period, and this delegator’s
withdrawal could depend on this entry. Thus once this delegator withdraws, this state entry
can be pruned. For the entry created by the delegator’s withdrawal, that is only required
by the creation of the next period. Thus once the next period is created, that withdrawal’s
period can be deleted.

This can be easily adapted to the case where there are multiple delegations / withdrawals
per block, by maintaining a reference count in each period starting state entry.

The slash entries for a validator can only be pruned when all of that validator’s constituent
delegators have their bonding period starting after the slash. This seems ineffective to keep
track of, thus it is not worth it. Each slash should instead remain in state until the validator
unbonds and all delegators have their fees withdrawn.

Thus, with reference counting, it will always be the case that the total reference count for
a particular validator is equal to the number of active delegations (each keeping a reference
to the period ended by their delegation) plus the number of slashes (each keeping a reference
to the period ended by the slash) plus one (for the most recent period).

4 Implementers Considerations

We have heretofore described F1, a pragmatic fee distribution algorithm with many benefits.
The overhead per block is a simple iteration over the bonded validator set, which will often
occur anyways due to underlying proof of stake logic (such as to check whether any validators
have entered or left). Consequently it can be implemented with minimal additional, as the
state entry reads and writes can be cached. All calculations are exact, modulo minor errors
resulting from fixed precision decimals. F1 supports arbitrary inflation and fee models, which
can vary per validator per block (which enables desirable incentive mechanisms, for example
paying only validators which signed the block), as can the commission rates of the individual
validators. The simplicity of the scheme lends itself well to implementation. F1 has been
implemented in the Cosmos SDK and will be used in the Cosmos Hub blockchain.
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Abstract
The main goal of this article is to present a direct approach for the formula giving the long-term
apparent hashrates of Selfish Mining strategies using only elementary probabilities and combinatorics,
more precisely, Dyck words. We can avoid computing stationary probabilities on Markov chain, nor
stopping times for Poisson processes as in previous analysis. We do apply these techniques to other
bockwithholding strategies in Bitcoin, and then, we consider also selfish mining in Ethereum.
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1 Introduction

Background

Selfish mining (in short SM) is a non-stop blockwithholding attack described in [1] which
exploits a flaw in the Bitcoin protocol in the difficulty adjustment formula [2]. The strategy
is made of attack cycles. During each attack cycle, the attacker adds blocks to a secret fork
and broadcasts them to peers with an appropriate timing. This is a deviant strategy from the
Bitcoin protocol since an honest miner never withholds validated blocks and always mines
on top of the last block of the official blockchain [7].

A rigorous profitability analysis that incorporates time considerations was done in [2].
The objective function based on sound economics principles that allows the comparison
of profitabilities of different mining strategies with repetition is the Revenue Ratio E[R]

E[T ]
where R and T are respectively the revenue and the duration time per attack cycle. A
blockcwithholding attack slows down the production of blocks, hurting the profitability
per unit time of all miners, including the attacker. Only after a difficulty adjustment, the
attack can become profitable. The mean duration time of block production becomes equal to
E[L] · τB where L is the number of blocks added to the official blockchain by the network per
attack cycle and τB = 600 sec. is the mean validation time of a block in Bitcoin network [4].
For Ethereum τE is around 12 sec. (in what follows, we use subscript B or E depending on
which network we consider).

The Revenue Ratio becomes proportional to the long-term apparent hashrate of the
strategy q̃ = E[Z]

E[L] where Z is the number of blocks added by the attacker to the official
blockchain per attack cycle. This apparent hashrate becomes a proxy for the Revenue Ratio
and can be used as a benchmark for profitability, but only after a difficulty adjustment.
Several methods have been devised to compute q̃. The original approach from [1] uses a
Markov model. Then the stationary probability is computed and used to compute the long
term apparent hashrate. In [2] we use Martingale techniques and consider Poisson processes
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and associated stopping times in order to compute the Revenue Ratio, and also the expected
number of blocks E[Z] added by the attacker to the blockchain per attack cycle. The Revenue
Ratio is computed at once using Doob’s Stopping Time Theorem for Martingales. This
last method has the advantage to compute the correct profitability analysis directly, not by
means of the proxy of the long term apparent hashrate. For example, we can compute how
long it takes for the attacker to have profit, something that is impossible to compute with
the old Markov chain model. Moreover, with the Martingale techniques we clearly identify
the difficulty adjustment formula as the origin of the vulnerability of the protocol. A Bitcoin
Improvement Proposal (BIP) was proposed in [2] to prevent blockwithholding attacks. It
consists in incorporating orphan blocks in the computation of the apparent hashrate of the
network, and this is done by signaling orphan blocks. Something similar is done in Ethereum
where rewards are given to some orphan blocks (“uncle” blocks). The goal was to favor
mining decentralization.

Main goal

In this article we present a direct combinatorial approach for the direct computation of
the apparent hashrate for different blockwithholding strategies in Bitcoin and Ethereum.
These formulas are sometimes complicated, so it is remarkable that such a direct approach is
possible. We don’t need to use Markov chain, nor Martingale theory, and only elementary
combinatorics using Dyck words. This analysis does not provide the full strength of the
Martingale theory approach, but provides the basic formulas to estimate the long term
apparent hashrates, and hence the profitabilities of the different strategies. The situation in
Ethereum is combinatorially more complex due to the reward of “uncle” blocks and their
signaling, which gives a larger spectrum of possible strategies. Our combinatorial approach
also gives closed-form formulas for the apparent hashrate of one of the most effective strategy.

Notation

As usual, the relative hashrate of the honest miners (resp. attacker) is denoted by p (resp. q)
and γ is its connectivity to the network. We have p+ q = 1, q < 1

2 and 0 ≤ γ ≤ 1. When a
competition occurs between two blocks or two forks, γ is the fraction of the honest miners
who mine on top of a block validated by the attacker.

We will make use of Catalan numbers and Dyck words. Catalan numbers can be defined by

Cn = 1
2n+ 1

(
2n
n

)
= (2n)!
n!(n+ 1)!

and their generating series is

C(x) =
+∞∑
n=0

Cnx
n = 1−

√
1− 4x

2x

A Dyck word is a string (word) composed by two letters X and Y such that no initial segment
of the string contains more Y ’s than X’s. The relation with Catalan numbers is that the
n-th Catalan number is the number of Dyck words of length 2n. We refer to [6] for more
properties and background material.
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2 Selfish mining

An attack cycle for the SM strategy (see [2]) can be described as a sequence X0 . . . Xn with
Xi ∈ {S,H}. The index i indicates the i-th block validated since the beginning of the cycle
and the letter S, resp. H, indicates that the selfish, resp. honest, miner has discovered this
block. From this labelling we will get the relation with Dyck words.

I Example 1. The sequence SSSHSHH means that the selfish miner has been first to validate
three blocks in a row, then the honest miners have mined one, then the selfish miner has
validated a new one and finally the honest miners have mined two blocks. At this point,
the advantage of the selfish miner is only of one block. So according to the SM strategy, he
decides to publish his whole fork and ends his attack cycle. In that case, we have L = Z = 4.

We are interested in the distribution of the random variable L.

I Theorem 2. We have P[L = 1] = p,P[L = 2] = pq + pq2 and for n > 3, P[L = n] =
pq2(pq)n−2Cn−2 where Cn is the n-th Catalan number.

Proof. For n > 3, we note that {L = n} is a collection of sequences of the form w =
SSX1 · · ·X2(n−2)H with Xi ∈ {S,H} for all i, such that if S and H are respectively replaced
by the brackets “(“ and “)” then, X1 · · ·X2(n−2) is a Dyck word (i.e. balanced parenthesis)
with length 2(n − 2) (see [6]). The number of letters “S” (resp. “H”) in w is n (resp.
n − 1). So, we get P[L = n] = pn−1qnCn−2 (see [6]). Finally, from the observation that
{L = 1} = {H}, {L = 2} = {SSH,SHS,SHH}, the result follows. J

I Corollary 3. We have E[L] = 1 + p2q
p−q

Proof. This formula results from the well know relations from [3]

Σn>0p(pq)nCn = 1 (1)

Σn>0np(pq)nCn = q

p− q
(2)

J

We can now compute the apparent hashrate.

I Theorem 4. The long-term apparent hashrate of the selfish miner in Bitcoin is

q̃B = [(p− q)(1 + pq) + pq]q − (p− q)p2q(1− γ)
pq2 + p− q

Proof. When L > 3 we are in the situation where all blocks validated by the selfish miner
end-up in the official blockchain. So, we have Z = L. If L = 1, then we have Z = 0.
Moreover, we have Z(SSH) = Z(SHS) = 2 and Z(SHH) = 0 (resp. 1) with probability 1− γ
(resp. γ). So, we have

E[Z] = E[L]− p− p2qγ − 2p2q(1− γ)
= E[L]− (p+ p2q + p2q(1− γ))

Using Corollary 3 we get,

E[Z]
E[L] = p2q + p− q − (p− q)(p+ p2q + p2q(1− γ))

pq2 + p− q

= [(p− q)(1 + pq) + pq]q − (p− q)p2q(1− γ)
pq2 + p− q

This is Proposition 4.9 from [2] which is another form of Formula (8) from [1]. J

Tokenomics 2019



11:4 Selfish Mining and Dyck Words in Bitcoin and Ethereum Networks

3 Stubborn Mining

We consider now two other block withholding strategies described in [8].

3.1 Equal Fork Stubborn Mining
In this strategy, the attacker never tries to override the official blockchain but, when possible,
he broadcasts the part of his secret fork sharing the same height as the official blockchain as
soon as the honest miners publish a new block. The attack cycle ends when the attacker has
been caught-up and overtaken by the honest miners by one block [3, 8]. We show that the
distribution of L− 1 is what we defined as a (p, q)-Catalan distribution of first type in [3].

I Theorem 5. For n > 0 we have P[L = n+ 1] = p(pq)nCn.

Proof. For n > 0, {L = n+ 1} corresponds to sequences of the form w = X1 · · ·X2nH with
Xi ∈ {S,H} for all i, such that if S and H are respectively replaced by the brackets “(“ and
“)” then, X1 · · ·X2n is a Dyck word with length 2n. J

I Corollary 6. We have E[L] = p
p−q

Proof. Follows from (1) and (2). J

I Theorem 7. The long-term apparent hashrate of a miner following the Equal-Fork Stubborn
Mining strategy is given by

q̃ = q

p
− (1− γ)(p− q)

γp
(1− pC((1− γ)pq))

Proof. In an attack cycle, all the honest blocks except the last one have a probability γ to
be replaced by the attacker. So, we have E[Z|L = n+ 1] = n+ 1− 1−(1−γ)n+1

γ (see Lemma
B.1 in [3]). Conditioning by {L = n+ 1} for n ∈ N and using Theorem 5, we get

E[Z] = q

p− q
− 1− γ

γ
(1− pC((1− γ)pq))

and the result follows. J

3.2 Lead Stubborn Mining
This strategy is similar to the selfish mining strategy but this time the attacker takes the risk
of being caught-up by the honest miners. When this happens, there is a final competition
between two forks sharing the same height. when the competition is resolved, a new attack
cycles starts. In this case, the distribution of L−1 turns out to be a (p, q)-Catalan distribution
of second type as defined in [3].

I Theorem 8. We have P[L = 1] = p and for n > 1, P[L = n+ 1] = (pq)nCn−1.

Proof. We have {L = 1} = {H} and for n > 0, the condition {L = n+ 1} corresponds to
sequences of the form w = SX1 · · ·X2(n−1)HY with X1, . . . , X2(n−1), Y ∈ {S,H} and such
that if S and H are respectively replaced by the brackets “(“ and “)” then, X1 · · ·X2(n−1) is
a Dyck word with length 2(n− 1). J

I Corollary 9. We have E[L] = p−q+pq
p−q

Proof. Follows from (1) and (2). J
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Figure 1 From left to right: HM, SM, LSM, EFSM.

By repeating the same argument as in the proof of Theorem 7 for the computation of
E[Z], we obtain the following theorem [3].

I Theorem 10. The long-term apparent hashrate of a miner following the Lead Stubborn
Mining strategy is given by

q̃ = q(p+ pq − q2)
p+ pq − q

− pq(p− q)(1− γ)
γ

· 1− p(1− γ)C((1− γ)pq)
p+ pq − q

We plot regions in the parameter space (q, γ) ∈ [0, 0.5]× [0, 1] according to which strategy
is more profitable. We get Figure 1 [3] (HM honest mining, SM selfish mining, LSM Lead
Stubborn mining, EFSM Equal Fork Stubborn mining).

4 Selfish mining in Ethereum

Ethereum is a cryptocurrency based on a variation of the GHOST protocol [11]. The reward
system is different than in Bitcoin, and this introduces a supplementary complexity in the
analysis of block withholding strategies. Contrary to Bitcoin, mined orphan blocks can be
rewarded like regular blocks, with a reward smaller than regular blocks. The condition for
an orphan block to get a reward is to be an “uncle” referred by a “nephew” which is “not
too far”. By definition, an “uncle” is a stale block whose parent belongs to the main chain
and a “nephew” is a regular block which refers to this “uncle”. “Not too far” means that the
distance d between the uncle and the nephew is less than some parameter value n1. The
distance is the number of blocks which separates the nephew to the uncle’s parent in the
main chain. When this situation occurs, the nephew gets an additional reward of πb and the
uncle gets a reward Ku(d)b where b denotes the coinbase in Ethereum. Today’s parameter
values are n1 = 6, Ku(d) = 8−d

8 · 116d66, π = 1
32 and b = 2 ETH [9].

There is little published research on selfish mining in Ethereum except for [9] and [10]
based on numerical simulations. In [9], through a Markov chain approach, a non-closed
infinite double sum is given for the apparent hash rate of the attacker.

Tokenomics 2019
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The general study of selfish mining in Ethereum is complex because equivalent selfish
mining strategies in Bitcoin are no longer equivalent for Ethereum. The attacker can choose
to refer or not uncle blocks. Referring uncle blocks provides an extra revenue but hurts the
main goal of selfish mining of lowering the difficulty. Also, he can choose to create artificially
more uncles by broadcasting the part of his secret fork sharing the same height as the public
blockchain of the honest miners. All this different strategies are analyzed in [5]. In the
present article we restrict to a couple of strategies.

In the strategy studied in [9], the attacker creates as many uncles as possible and tries
to refer all of them. In [5], we prove that this strategy is not optimal and is less profitable
than the strategy we study in this article, for which we obtain a closed form formula for the
apparent hashrate of the attacker using only elementary combinatorics.

In the strategy we consider, the attacker never broadcasts his fork, which remains secret
until he is on the edge of being caught-up by the honest miners or is actually caught up (this
last case can only occur when the attack cycle starts with SH). In addition, the attacker
always refers to all possible uncle blocks.

We denote by R the revenue by cycle of the selfish miner following this strategy. We
have R = Rs +Ru +Rn where Rs is the revenue coming from “static” blocks in the main
chain i.e., Rs = Zb, Ru is the revenue coming from uncles and Rn is the additional revenue
coming from nephews.
I Remark 11. We always have Ru = 0 except when the attack cycle is SHH and the last
block mined by the honest miners has been mined on top of an honest block. In that case,
the first block mined by the selfish miner is referred by the second block of the honest miners.
It follows from this remark that

E
[
Ru
b

]
= p2q(1− γ)Ku(1) (3)

It remains to compute E[Rn].

I Definition 12. If ω is an attack cycle, we denote by U(ω) (resp. Us(ω), Uh(ω)) the
random variable counting the number of uncles created during the cycle ω which are referred
by nephew blocks (resp. nephew blocks mined by the selfish miner, nephew blocks mined by
the honest miners) in the cycle ω or in a later attack cycle.

We denote by V (ω) the random variable counting the number of uncles created during the
cycle ω and are referred by nephew blocks (honest or not) in an attack cycle strictly after ω.

I Proposition 13. We have E[U ] = q − qn1+1.

Proof. We have U = 0 if and only if the attack cycle is H or if it starts with n1 + 1 blocks of
type S. Otherwise, we have U = 1. So, E[U ] = P[U > 0] = 1− (p+ qn1+1) = q − qn1+1 J

We compute now E[V ]

I Proposition 14. We have E[V ] = pq2 · 1−(pq)n1−1

1−pq .

Proof. We have V = 1 if and only if the attack cycle ω is SS..SH..H with 2 ≤ k ≤ n1 S. In
that case, the first block H is an uncle that will be referred by the first future official block
in the attack cycle after ω. Otherwise, V = 0. So, E[V ] = pq2 + . . .+ pn1−1qn1 , and we get
the result. J

I Proposition 15. We have E[Uh] = p2q +
(
p+ (1− γ)p2q

)
pq2 · 1−(pq)n1−1

1−pq .
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Proof. Let ω be an attack cycle and let ω′ be the attack cycle after ω. If U (1)
h (ω) (resp.

U
(2)
h (ω)) counts the number of uncles referred by honest nephews only present in ω (resp. in

ω′), then we have Uh = U
(1)
h +U (2)

h . Moreover, U (1)
h (ω) = 1ω=SHH and U (2)

h (ω) = 1ω′∈E ·V (ω)
where E is the event that ω′ is either H or SHH with a second honest block mined on top of
the first honest block. Hence we get the result by taking expectations since ω and ω′ are
independent. J

I Corollary 16. We have

E
[
Rn
π

]
= q2(1 + p)− qn1+1 −

(
p+ (1− γ)p2q

)
pq2 · 1− (pq)n1−1

1− pq (4)

Proof. We have E[Us] = E[U ]− E[Uh] and we use Proposition 13 and Proposition 15. J

We can now compute the apparent hashrate of the selfish miner in Ethereum. We have
two cases to consider: The old difficulty adjustment formula (similar to the one in Bitcoin),
and the current difficulty adjustment formula that takesinto account referred uncles.

I Theorem 17. The long term apparent hashrate q̃E,0 of the selfish miner in Ethereum with
its old difficulty adjustment formula is given by q̃E,0 = q̃B + q̃uKu(1) + q̃nπ with

q̃u = p2q(1− γ)(p− q)
p− q + p2q

q̃n =
(p− q)

(
q2(1 + p)− qn1+1 −

(
p+ (1− γ)p2q

)
pq2 · 1−(pq)n1−1

1−pq

)
p− q + p2q

The long term apparent hashrate q̃E of the selfish miner in Ethereum with its current difficulty
adjustment formula is

q̃E = q̃E,0 · ξ

where

ξ = p− q + p2q

p2q + (p− q)
(
1 + q − qn1+1

)
Proof. We have q̃E,0 = E[R]

E[L] and q̃E = E[R]
E[L]+E[U ] We then use Proposition 13, (3), (4) and

the formula for q̃B in Theorem 4. J

We can now compare this strategy to selfish mining in Bitcoin. Observe that q̃E,0 > q̃B ,
where q̃B is the long term apparent hashrate of the Bitcoin selfish miner. Therefore, the
minimal threshold qmin such that the inequality q̃ > q for q > qmin is always lower in
Ethereum with its old adjustment formula than in Bitcoin. This is due to the particular
reward system that indeed favors selfish mining as we have proved. Notice also that when
q > qmin, the attack is profitable faster in Ethereum than in Bitcoin because of another
difference in the protocols: In Ethereum the difficulty is updated at each block and in Bitcoin
only after 2016 blocks.

Figure 2 plots the regions in parameter space (q, γ) ∈ [0, 0.5]× [0, 1] where each strategy
HM or SM is more profitable. We find qmin ≈ 9.5% when γ = 0.

Now, Ethereum with its new difficulty adjustment formula is more resilient to selfish
mining. Figure 3 plots the region in parameter space (q, γ) ∈ [0, 0.5] × [0, 1] where each
strategy HM or SM is more profitable.
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Figure 2 HM vs. SM Ethereum old difficulty adjustment.

Figure 3 HM vs. SM Ethereum new difficulty adjustment.
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Figure 4 HM vs. SM in Bitcoin and Ethereum.

We note that Bitcoin is more resilient to selfish mining when the relative hashrate of
the attacker is high, but we have the opposite for smaller relative hashrates. This means
that when the relative hashrate of the attacker is small (resp. high) then, the connectivity
of the attacker should be higher (resp. lower) in Ethereum than in Bitcoin for the attack
to be profitable. Figure 4 compares the thresholds curves between HM and SM in Bitcoin
and Ethereum.

5 Conclusions

We have computed closed-form formulas for the long term apparent hashrate of different
blockwithholding strategies for Bitcoin and Ethereum using only elementary combinatorics,
Dyck words, Catalan numbers, and their properties. Although this approach does not provide
a complete analysis of the profitability of the strategies, as for example the time it takes to the
strategy to become profitable, this minimalist approach is sufficient to compare profitabilities
in the long run. In the strategies studied we have show the impact of the different reward
system. For these strategies, depending on given parameters (q, γ), relative hashrate and
connectivity of the attacker, we have determined which network is more resilient to selfish
mining attacks.
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Abstract
One of the main issues in digital forensics is the management of evidences. From the time of evidence
collection until the time of their exploitation in a legal court, evidences may be accessed by multiple
parties involved in the investigation that take temporary their ownership. This process, called Chain
of Custody (CoC), must ensure that evidences are not altered during the investigation, despite
multiple entities owned them, in order to be admissible in a legal court. Currently digital evidences
CoC is managed entirely manually with entities involved in the chain required to fill in documents
accompanying the evidence. In this paper, we propose a Blockchain-based Chain of Custody (B-CoC)
to dematerialize the CoC process guaranteeing auditable integrity of the collected evidences and
traceability of owners. We developed a prototype of B-CoC based on Ethereum and we evaluated its
performance.
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1 Introduction

One of the main issues in digital forensics is the management of evidences. From the time
of evidence collection until the time of their exploitation in a legal court, evidences may
be accessed by multiple parties involved in the investigation that take temporarily their
ownership. The Chain of Custody is the process of validating how any kind of evidence has
been gathered, tracked and protected on its way to a court of law. Chain of Custody (CoC)
is not a mandatory step in forensic analysis. However, it is extensively used as evidences,
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to be acceptable in a court or in legal procedures, must be proved to be not altered during
investigations. Thus, a good CoC process should use a standard for dealing and handling
evidences (digital or not), regardless of whether the evidence will be used in a trial or not.

The main requirements of a CoC process are:
Integrity: the evidence has not been altered or corrupted during the transferring.
Traceability: the evidence must be traced from the time of its collection until it is
destroyed.
Authentication: all the entities interacting with an evidence must provide an irrefutable
sign as a recognizable proof of their identity.
Verifiability: the whole process must be verifiable from every entity involved in the
process.
Security – Tampering proof : Changeovers of an evidence cannot be altered or
corrupted.

Currently, CoC process requirements are met by employing a physical handover of evidences
where, at each step, documents are filled in and signed in front of officers. In this paper, we
take a step toward the dematerialisation of this process by proposing a Blockchain-based
architecture for CoC of digital evidences called B-CoC. Leveraging on the features offered
by blockchain technologies, we defined an architecture able to support the CoC process. To
this aim, we proposed an architecture, namely B-CoC, that is able to realise an Evidence
log with integrity checks (i.e., every process is able to verify and detect if there has been
an integrity breach that would invalidate the digital evidence). B-CoC integrates together
an ordinary database with a permissioned blockchain: the first represents the Evidence DB
where digital evidences are stored, while the second represents the Evidence Log that allows
to track digital evidences during their lifecycle. This distinction is done to store each type
of information in the most suited kind of distributed storage: digital evidences are quite
static and large piece of information and do not need particular support for updates while
the evidence log is characterised by a reduced size of record to be stored and is subjected to
a high update frequency.

In particular, we set up a private permissioned blockchain and we implemented a smart
contract to keep track of the ownership changes during the evidence lifecycle. We implemented
our prototype on an Ethereum [9] private network and we evaluated the impact of the system
configuration parameters on performance.

2 Background

2.1 Blockchain technology
The blockchain technology implements a decentralized fully replicated append-only ledger in a
peer-to-peer network, originally employed for the Bitcoin cryptocurrency [7]. All participating
nodes maintain a full local copy of the blockchain. The blockchain consists of a sequence
of blocks containing the transactions of the ledger. Transactions inside blocks are sorted
chronologically and each block contains a cryptographic hash of the previous block in the
chain. Nodes create new blocks as they receives transactions, which are broadcast in the
network. Once a block is complete, they start the consensus process to convince other nodes
to include it in the blockchain. In the original blockchain technology employed in Bitcoin
the consensus process is based on Proof-of-Work (PoW) [7]. With PoW nodes compete with
each other in confirming transactions and creating new blocks by solving a mathematical
puzzle. While solving a block is a computational intensive task, verifying its validity is easy.
To incentivize such mechanism, solving a block also results in mining a certain amount of
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bitcoins, which is the reward for block creators (usually referred to as miners). Sometimes,
more than one miner may generate a valid block thus creating forks in the chain. Forks
are solved by accepting only the longest branch as the valid continuation of the chain (thus
eliminating forks eventually). The main advantage of PoW, over traditional consensus
algorithms, is that an attacker would have to control the majority of the computational power
of the network, rather than the majority of the nodes, which is considered more difficult and
virtually impossible in public large-scale networks.

The main criticism to PoW is its huge demand of energy, which also prevents its applic-
ability in certain contexts. This has led to the investigation of alternative forms of consensus
for the blockchain, such as Proof-of-Stake [5]. With PoS, a set of nodes, called validators,
take turns proposing new blocks and voting on them. Validators put a stake in the network
(e.g., a given amount of cryptocurrency) and are incentivized to act honestly so as not to
lose the stake. Indeed, the blockchain keeps track of the set of validators, which are ousted if
they behave maliciously (thus losing their stake).

A specific type of PoS is Proof-of-Authority (PoA) in which individual’s identity (rather
than cryptocurrency) is at stake. With PoA validators must have been preventively authorized
and their identities are known. Thus, acting maliciously results in losing personal reputation
and ultimately in being expelled from the validator set.

While PoW is particularly suited for public networks, both PoS and PoA may be suitable
for private networks (where PoW would probably fail short as it would be much easier to
control the majority of the computational power). Moreover, PoW and PoS can be used in
permissionless networks, that is, networks where nodes can freely join the network without
previous authorization (e.g., as in Bitcoin and Ethereum). PoA, on the other hand, is
typically employed in permissioned blockchain networks, that is, networks in which nodes
cannot freely join and become validators, but rather they have to be preventively authorized.

2.2 Ethereum and Smart Contracts
Etherium [9] can be seen as a decentralized virtual machine based on the blockchain technology.
The Ethereum Virtual Machine (EVM) runs programs, referred to as smart contracts, whose
state is stored in the Ethereum blockchain. Every node execute a local EVM. When an
account wants to execute a function of a smart contract, it issues a transaction which is
broadcast to the network. Each node executes the transaction on its local EVM and stores
it, along with the new computed state, in the blockchain.

In Ethereum each EVM instruction consumes a virtual resource referred to as gas.
Gas can be seen as the fuel of the EVM and is employed to incentivize miners to execute

transactions and include them in the blockchain. Indeed, for each transaction, miners are
rewarded by the issuer with the payment of fees proportional to the total amount of gas
“consumed” to execute that transaction.

To prevent mined blocks from becoming too large, which may severely impact block
propagation and processing latency, each block has a block gas limit, which is the maximum
amount of gas all transactions included in the block are allowed to consume. Thus, an issued
transaction may not be included in the current block by a miner because it would exceed
the block gas limit. In such case, the issued transaction would have to wait until the next
block creation.

The public Ethereum blockchain (often referred to simply as “Ethereum”) is a public
permissionless networks which adopts PoW as consensus algorithm (even though it is planned
to switch to PoS in the future). However, all major Ethereum implementations [1, 3] allow
to configure many aspects of the protocol, such as the actual consensus algorithms employed,
and allow to build custom public/private permissionless/permissioned blockchain networks.
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2.3 Istanbul BFT consensus protocol
Istanbul Byzantine Fault Tolerance (IBFT) [2] is an adaptation of the Practical Byzantine
Fault Tolerance (PBFT) [6] algorithm to serve as a PoA consensus algorithm for the Ethereum
protocol. IBFT can tolerate at most f faulty validators out of a total of n = 3f +1 validators.
The IBFT algorithm proceeds in rounds with a new block created every T seconds, where
the block period T is a constant configuration parameter. In each round one of the validators
is elected as the proposer. The proposer creates the new block and broadcasts it to all
validators with a pre-prepare message. Upon receiving pre-prepare messages, validators enter
the pre-prepared phase and broadcast prepare messages. This, ensures that validators are
aligned to the same round and block. Upon receiving 2f + 1 prepare messages, validators
enter the prepared phase and broadcast commit messages to inform other validators that
they accept the proposed block. Finally, upon receiving 2f + 1 commit messages, validators
enter the committed phase and insert the block in the blockchain.

3 System Model

CoC model. A digital evidence (or electronic evidence) is any probative information stored
or transmitted in digital form that a party may use in a trial to a court case. Digital evidences
are collected by authorised parties (usually police officers) that become their temporary
(first) owners.

For the sake of presentation and without loss of generality, in the following we will
consider a single digital evidence d_ev collected by an authorised entity e0 that holds its
ownership. During investigations, several authorised entities (e.g., police offices, lawyers,
judges, magistrates, etc.) may need to access, acquire and/or own temporarily d_ev. The set
of authorised entities that can interact with d_ev is denoted with Ad_ev. Each authorised
entity has a unique identifier known to all and he/she owns credentials that allows him/her
to be authenticated and take actions in the CoC process.

At each time t, d_ev can have just one owner and the owner must belong to Ad_ev. If
an authorised entity ei needs to acquire and own d_ev, the current owner needs to issue a
transfer request towards ei. The change of ownership happens if and only if ei ∈ Ad_ev and
the transfer record is written permanently in the evidence log.

Network Model. The system is composed by a set of processes p1, p2, . . . , pn, one for each
authorised entity in Ad_ev. Each process pi has a pair of private-public keys that it uses
to authenticate itself and to sign messages. Processes are connected trough a peer-to-peer
network (authenticated perfect links). We consider that authorised entities are trusted but
up to f of them (with n > 3f) can be compromised and controlled by an adversary i.e., they
may behave as a Byzantine process deviating arbitrarily from the protocol.

4 B-CoC Architecture

The Blockchain-based Chain of Custody (B-CoC) architecture proposed in this paper is based
on a private and permissioned blockchain. This choice has been driven by the authentication
requirement of the CoC process that does not allow unauthorised and untrusted parties to
manage digital evidences and thus to be in the network.

As shown in Figure 1, B-CoC is composed mainly of three components: (i) the Evidences
DB, (ii) the Evidence Log and the (iii) Frontend interface. The Evidence DB is an ordinary
database and/or file repository where we store the actual digital evidences, while CoC related
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Figure 1 B-CoC architecture.

data are stored in the Evidence Log, which is implemented through the blockchain technology.
The reason for this separation is twofold. First of all, evidences can be too large to be
efficiently stored in the blockchain (for example, an evidence may be a bit-by-bit copy of a
storage device of several TBs of capacity). Secondly, and most importantly, if evidences were
stored in the blockchain, every node in the blockchain network would have access to them,
while only authorized nodes should be allowed to acquire an evidence. Therefore, we store in
the blockchain only the information regarding the CoC process and an hash of the evidence
which allows to verify evidences integrity during acquisition.

Evidence DB. The Evidences DB is an ordinary distributed database and/or file repository
where the original digital evidence is stored along with an identifier ID, obtained as the hash
of the evidence and a nonce (to guarantee uniqueness of IDs). This database is distributed
and is managed by trusted entities (e.g., law court officers). Moreover, each access is executed
only if the requesting entity is authorized to perform such access according to its role.

Evidence Log. The Evidence Log is implemented trough the blockchain technology and
stores, for each evidence, its ID, a description, the identity of the submitter (which we call
creator) and the complete history of owners up to the current one, including the time at
which changes of ownership occurred. Note that while the evidence itself is not stored in the
blockchain, the ID allows to verify that the evidence has not been tampered with, provided
that a robust cryptographic hash function is used to generate it.

The evidence log is implemented on top of a peer-to-peer network composed by all
authorised entities. Such network can be decomposed in two sets of nodes:

Validator nodes: they have mainly the following functionalities: (i) storing a copy of the
blockchain, (ii) validating transactions and (iii) create, propose and add blocks to the
chain (i.e., participate to the consensus protocol). This is the set of nodes that must be
preventively authorized with the role of validators in the permissioned blockchain.
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Lightweight nodes: they can be seen as clients of the chain since they simply issue
transactions and need to rely on validators for adding and validating their transactions.

Taking Italy as a use case, each validator may correspond to the main coordinator of the
court of one of the 20 regional capitals. Lightweight nodes, instead, would represent all the
other involved parties such as police departments, forensic investigators, forensic consultants
and so on. The Evidence Log runs a smart contract which exposes four primitives (see
Figure 1):

CreateEvidence(ID, description): stores a new evidence entry in the blockchain with
the specified ID and description, setting the submitter identity as the creator and
current owner of the evidence.
Transfer(ID, newowner): transfers the ownership of an evidence (registering the han-
dover). It fails if the issuer is not the current owner.
RemoveEvidence(ID): removes an evidence entry. It fails if the issuer is not the creator.
GetEvidence(ID): returns the information in the evidence entry. Namely, the ID, de-
scription, creator and all owners with the time of each change of ownership.

Implementation details of the Evidence Log and the smart contract are discussed in Section 5.

Frontend Interface. The frontend represents the interface between B-CoC and its users. A
local instance runs on each node and interacts with the Evidences DB and the Evidence Log
(through a local blockchain node). When an authorized user submits a new digital evidence
d_ev to the system, he/she takes the role of creator of d_ev (see Figure 1). The frontend
generates the ID for d_ev using a nonce n, sends the command store(ID, n, d_ev) to
the Evidence DB and issues the CreateEvidence() transaction in the Evidence Log. As
already discussed the submitter is also registered as the first owner in the blockchain. When
the Check Authorization component of the Evidence DB receives the store(ID, n, d_ev)
command, it starts to monitor the Evidence Log for the corresponding CreateEvidence()
transaction. Only upon confirmation that this transaction has been inserted in the Evidence
Log, the Check Authorization component actually stores the pair (ID, n, d_ev) into the
Evidence DB.

The creator of an evidence d_ev can request to discard it from the system (e.g., because it
is no more legally valid). If he/she is authorized to do so, the corresponding entry is removed
from the Evidence Log by issuing the RemoveEvidence() transaction. If the transaction
succeeds, the corresponding evidence is deleted from the Evidence DB by issuing the delete
command. Upon receiving the delete command the Check Authorization component of the
Evidence DB checks if the corresponding RemoveEvidence() transaction has been inserted
in the Evidence Log. If the transaction is not present, the delete command fails and sends
an error response to the frontend.

When a user wants to acquire an evidence d_ev, the Frontend sends a request to the
Evidences DB which will serve the request only if the user is the current owner of d_ev.
This check is performed by the Check Authorization component by interacting with the
Evidence Log.

The change of ownership of an evidence d_ev is performed by issuing a Transfer()
transaction specifying the new owner. Note that this operation does not involve the Evidence
Log in any way.

Finally, every user in the B-CoC network can query the Evidence Log to get the entry
of an evidence (which contains all relevant information except the evidence itself). This is
performed by simply issuing the GetEvidence() transaction.
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5 Evidence Log Implementation

As described in Section 4, B-CoC Evidence Log is designed as a private and permissioned
blockchain. The blockchain infrastructure is implemented through Geth [1] a popular
implementation of a full Ethereum node. Geth allows to setup a private network and
configure all aspects of the blockchain and the consensus protocol employed. Given the
design of a private permissioned blockchain we adopt a PoA-based consensus. Namely, the
IBFT consensus protocol described in Section 2.3. Let us note that, at the time of our
development, IBFT was the only Byzantine tolerant consensus protocol available using Geth.
On top of this blockchain infrastructure, we run a smart contract implementing the CoC
process. The choice of implementing B-CoC using Geth has been driven by a cost-benefit
analysis. We considered several blockchain technologies, namely full Ethereum, Geth with
PoA consensus and Hyperledger Fabric, and we evaluated them against the requirement of
our application. None of them is currently matching perfectly our needs but we believe that
Geth with PoA consensus is the most appropriate given its ease of adaptation, deployment
and complexity. The implementation of B-CoC Evidence Log involves three steps: (i) the
initialization of the private blockchain, (ii) the creation of the private network and (iii) the
creation and deployment of the smart contract.

5.1 Private chain initialization
The setup of a new blockchain involves the creation of its genesis block. This is the first
block of a blockchain and contains the initial parameters. The only configuration parameters
that are of interest for the purposes of the following discussion are:

Block Period T : the block period of the IBFT consensus algorithm (see section 2.3);
Block Gas Limit G: Maximum amount of gas transactions in a block are allowed to
consume (see section 2.2);
Validators: The Ethereum addresses of the pre-authorized validators.

The genesis block is used to initialize each node of the network.

5.2 Private network setup
First of all, to build the private peer-to-peer network we need to setup the peer discovery
service to allow new nodes to enter the network and know other nodes. This is accomplished
with the bootnode tool (of the Geth tools suite). This tool allows to run special nodes (with
known IP addresses) that validators and lightweight nodes will contact when first started to
exchange peer information.

Validators and lightweight nodes are Geth nodes. First, we configure the set of validators
(which is fixed and known in advance) with the genesis block and we run them through the
geth command (of the Geth tools suite). Validators are created once at the beginning and
they never leave the network, unless they act maliciously and are expelled. Lightweight
nodes, instead, can be created and join/leave the network at any time. They are created
with the geth tool as well, but their addresses are not included in the genesis block.

5.3 Smart contract implementation
The smart contract has been implemented through the Solidity contract-oriented programming
language [4]. Due to space constraints, the code of the smart contract is reported in the
Appendix. The smart contract manages entries associated to digital evidences (i.e., the entries
of the Evidence Log). Each Evidence entry (lines 3-10) consists of the ID, the Ethereum
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Table 1 Size and gas used by each transaction.

T X size(T X) (bytes) gas(T X) (units)

CreateEvidence(0) 207 170207
· · · · · · · · ·
CreateEvidence(1024) 1233 897367
Transfer() 174 80502
RemoveEvidence() 142 236478

address of the creator, the address of the owner, a string field to store the description of the
evidence and two arrays taddr and ttime that store, respectively, the evidence handovers
and the times at which they occurred. These arrays are chronologically sorted from the
creator to the current owner. All evidence items are stored in a map indexed by evidence IDs
(line 11). The smart contract has a total of four functions implementing the primitives of
the Evidence Log described in Section 4. The CreateEvidence(ID, description) function
creates a new Evidence entry with the specified ID and description, and the address of the
related transaction sender as the creator and current owner of the evidence (line 26). The
Transfer(ID, newowner) function transfers the ownership of the evidence identified by ID
to the entity identified by the address newowner (line 35). Note that only the current owner
of an evidence can transfer ownership (OnlyOwner modifier). The RemoveEvidence(ID)
function removes an evidence from the map of evidences (line 41). No further operations can
be performed on a removed evidence. Note that only the creator of an evidence can remove
the evidence (OnlyCreator modifier). The GetEvidence(ID) function returns all fields of
an evidence entry (line 46).

Note that while calling the first three functions results in issuing transactions to the
blockchain that modify the state of the smart contract, the GetEvidence function only
returns an entry and does not modify the state. In the context of the Solidity language
these are called constant functions or views. Calling views does not result in the issuing of
transactions, but rather they are executed locally by the node’s local EVM.

6 Evaluation

In this section we evaluate how the parameters of B-CoC, namely the block period T and
the block gas limit G, affect its performance. This analysis allows to guide the choice of
the most appropriate configuration parameters in each scenario, as discussed in Section 7.
Section 6.1 reports an analysis of the transaction latency, Section 6.2 evaluates the space
overhead due to block headers and Section 6.3 discusses the growth rate of the blockchain.

Notation. In the following sections we will use the notation TX to refer to a transaction
type (i.e., a non-constant function of a smart contract) and tx to refer to an execution
of a transaction. For example, TX may refer to the transaction type Transfer(), while
tx may refer to an actual execution of a Transfer() of an evidence. We will use gas(tx)
and size(tx) to indicate, respectively, the gas consumed by the execution of a transaction
tx and the size (in bytes) of tx when included in a block. Note that, in general, both
gas(tx) and size(tx) depend on the particular execution of tx. In practice, for our smart
contract, transaction types Transfer() and RemoveEvidence() have constant size and gas
used, while for CreateEvidence() such parameters depend exclusively on the length ` of
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the description parameter. Thus, for ease of presentation we will consider a different
transaction type CreateEvidence(`) for each value of `. Since we limit the length of the
description parameter to 1024 characters, we consider 1025 different transaction types
(` = 0, . . . , 1025). Thus, each transaction type has constant size and constant consumed gas
and, therefore, we will consider size(TX) = size(tx) where tx is an execution of TX and
use the two members of the equation interchangeably, as well as gas(TX) = gas(tx). We
will refer to SC = {TX1, . . . , TXn} as the set of transaction types of the smart contract.
Table 1 reports the size and gas of the transaction types in our smart contract. Due to space
constraints Table 1 only shows CreateEvidence(`) for ` = 0 and ` = 1024, but the size and
gas used by such transaction types increase with `.

6.1 Transaction latency
The transaction latency L(tx) = LB(tx) + LC(b) is the time elapsed from the issue of the
transaction to its inclusion in the blockchain. It is the sum of the block inclusion latency
LB(tx), that is the time required by tx to be included in a block b of the current proposer,
and the consensus latency LC(b), which is the time required to reach consensus on block
b and include it in the blockchain: In the next two sections we will analyze these two
terms separately.

6.1.1 Block inclusion latency
The block inclusion latency LB(tx) is the time required for a transaction tx to be included
in a block. Indeed, whenever a new transaction is issued it may not fit in the block of the
current proposer due to the block gas limit G. In such case, the transaction is reissued in
the next block period.

More formally, let block(tx) be the block in which, eventually, transaction tx is included,
and time(tx), time(b) be, respectively, the time at which tx is issued and the time at which
a block b was created (i.e., the beginning of b’s block period), then:

LB(tx) = time(block(tx)) + T − time(tx) (1)

where T is the block period.
The block inclusion latency is affected by the block period parameter T , the gas limit

G and the workload, i.e., the rate of transactions issued to the system in the unit of time.
Suppose that we are able to precisely characterize the workload the system is subject to and
to set G such that every issued transaction is included in the block of the current proposer.
In such ideal conditions, LB(tx) ∈ [0, T ]. That is, the maximum block inclusion latency
is the block period T . Clearly, setting G = ∞ would meet the ideal conditions for every
possible workload volume, but on the other side would negatively impact consensus latency,
as blocks could increase indefinitely (see next section). Thus, we would like to set G as small
as possible (to reduce consensus latency), but large enough so that (at least on average)
every transaction is included in the block of the current proposer. Thus the ideal value of G

depends on the workload. However, rather than the number of transactions per seconds, it
depends on the gas rate, i.e., the amount of gas consumed by the transactions issued in a
given block period. Indeed, the minimum value of G that guarantees the ideal conditions for
the block inclusion latency is the maximum gas rate.

Figure 2 shows the results of three experiments that confirm the previous claim. In each
experiment we set a different value of the block gas limit (G1, G2 G3) and we progressively
increased the gas rate from the start to the end of the experiment. From the figure we
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Figure 2 Mean block inclusion latency varying the gas rate, i.e., the amount of gas consumed by
transactions in a block period.

can clearly see that, in each experiment, when the gas rate is less than or equal to the gas
limit the average block inclusion latency is approximately equal to the expected value of
T/2 (because transactions are issued uniformly distributed in each block period) while the
maximum latency is T (not shown in the figure). However, as soon as the gas rate exceeds the
block gas limit the average block inclusion latency starts increasing indefinitely as expected.

This analysis provides a lower bound for the value of the block gas limit (i.e., the maximum
gas rate), that allows to minimize the maximum block inclusion latency to T . However,
determining such value may be difficult. Section 7 reports a more general and detailed
discussion on setting the parameters of B-CoC.

6.1.2 Consensus latency

Given the consensus protocol described in section 2.3, the consensus latency, i.e., the
time required to propagate a block b between the validators and reach consensus, can be
approximated by the formula LC(b) ≈ sPP(b)+sP+sC

R , where sPP(b) is the size of the pre-
prepare message, sP is the size of the prepare message, sC is the size of the commit message
and R is the bandwidth of the slowest communication channel between two validators nodes
(bytes/sec). While sP and sC are constant, the pre-prepare message piggybacks the block
b and thus sPP(b) depends on size(b). Since R is typically a constant that depends on the
infrastructure connecting the validator nodes, the only factor that we can adjust to control
the latency is the size of a block.

The size of a block is the sum of the size of the transactions in it plus the size of the block
header sH (which is constant). In our prototype implementation of B-CoC, sH = 1909 bytes.
The actual number and type of transactions in a block depends on many factors, including the
block period T , the block gas limit G and ultimately the particular set of transactions sent
during a given time period. Thus, in general, different blocks have different sizes. However,
we can control the maximum block size Smax, and thus the maximum consensus latency
Lmax

C , by adjusting the block gas limit G.
For a given value of G, the maximum block size Smax can be computed by solving the

following optimization problem:
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I Problem 1 (UKP).

maximize
∑

T Xi∈SC
size(TXi) · xi

subject to
∑

T Xi∈SC
gas(TXi) · xi ≤ G

xi ∈ N, i = 1, . . . , n

where xi is the number of times a transaction of type TXi appears in the block of maximum
size. The optimal solution {x∗1, . . . , x∗n} leads to the maximum block size:

Smax = sH + OPTUKP(G) = sH +
∑

T Xi∈SC
size(TXi) · x∗i

Problem 1 is an instance of the well-known unbounded knapsack problem [8], where
transaction types correspond to the items to fit in the knapsack, while transactions’ size
and consumed gas correspond, respectively, to items’ value and weight. The block gas limit
parameter G corresponds to the knapsack maximum weight.

While the general unbounded knapsack problem is NP-hard (with time complexity
O(nG)), this particular instance turns out to be trivial. Indeed, it is easy to see that
Transfer() dominates all other transaction types [8]. That is, given any block containing
at least a transaction tx of type in SC \ {Transfer()}, we can always replace tx with
a sufficient number of Transfer() so as to obtain a better solution to Problem 1. For
example, we can always replace a transaction of type RemoveEvidence() with a single
Transfer() and obtain a solution that consumes less gas but have larger size. The same
occurs if we replace CreateEvidence(0) with 2 Transfer(), or CreateEvidence(1024)
with at least 8 Transfer(). This implies that the optimal solution of this instance of
the unbounded knapsack problem corresponds to a block consisting of only Transfer()
transactions. Therefore, let gT = gas(Transfer()), sT = size(Transfer()), the solution is
simply given by:

Smax = sH +
⌊

G

gT

⌋
· sT (2)

Note that Smax cannot be an arbitrary integer, but only one such that Smax = sH + k · sT,
k ∈ N.

Once chosen the appropriate value of Smax (one that allows to limit the maximum
consensus latency to an acceptable bound), G can be set to any value such that:

G = Smax − sH

sT
· gT + r = k · gT + r, r = 0, . . . , gT − 1 (3)

Equations 2 and 3 allows to determine an upper-bound for G so as to bound the maximum
consensus latency Lmax

C . A more general discussion on how to properly set B-CoC’s parameters
is reported in section 7.

6.2 Block headers overhead
As discussed in section 6.1.1, the block period T affects transactions block inclusion latency.
A longer block period implies higher latency. On the other hand, a shorter period results in
a higher number of blocks created per time interval (since a block for each block period is
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Figure 3 Total headers size per year for different block periods T .

created). Since each block has a fixed size header, the larger the number of blocks created,
the higher the space occupied by block headers compared to transactions in the blockchain,
that is, the higher the space overhead.

The headers size overhead, i.e., the total size of block headers, at any time t is:

OH(t) = sH ·
t

T
(4)

Note that this value only depends on the number of blocks in the chain at time t, and not
on the number of transactions. Figure 3 shows the space overhead per year (sH = 1909 bytes
in our prototype implementation), that is, how much blockchain’s space is taken up by block
headers every year. For example, for T = 5 minutes the space overhead is around 191 MB
per year. We find this value of T a good trade-off between transaction latency and block
headers overhead for this particular application of the blockchain.

6.3 Blockchain growth rate
The blockchain can be seen as an append-only database. That is, its size cannot shrink
over time. If ISC(t) is the set of transactions included in the blockchain at time t, then the
blockchain total size at time t is:

sizebc(t) = sg + overheadbc(t) +
∑

tx∈ISC(t)

size(tx)

where sg is the size of the genesis block. Therefore, the growth rate over a time interval
[t1, t2] is sizebc(t2)− sizebc(t1), that is:

GR(t1; t2) = sH ·
t2 − t1

T
+

∑
tx∈ISC(t1;t2)

size(tx) (5)

where ISC(t1; t2) = ISC(t2) \ ISC(t1).
Obviously, how fast a blockchain grows over time depends mainly on the transaction

rate. Another factor that affects the growth rate is the block period T . As already shown in
section 6.2, this parameter affects the headers overhead and thus the first term of equation 5.
The block gas limit parameter G may also affect the growth rate, as, if not properly
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Table 2 Growth rate for different classes of workloads (n CreateEvidence(1024), n

RemoveEvidence(), 10n Transfer() per year).

Workload GR−OH GR with T = 5′ OH / GR (%)

n = 10000 29.7 MB/year 221.08 MB/year 86.56%
n = 100000 297 MB/year 488.45 MB/year 39.18%
n = 1000000 2.9 GB/year 3.09 GB/year 6.05%

dimensioned, it may increase latency spreading the incoming transaction rate over a larger
time period, thus, decreasing the growth rate (i.e., G would affect the number and type of
transactions included in ISC(t1; t2) and thus the second term of equation 5). However, the
analysis detailed in section 6.1, should allow to set the value of G so as to bound transaction
latency. In practice, G should be set greater than the average gas rate to avoid an ever
increasing latency. In this conditions, if the growth rate is computed over a large enough
interval of time (to hide the effects of potential peak gas rate periods), the block gas limit
parameter should not affect the growth rate significantly (that is, if properly set, G should
not affect ISC(t1; t2)). Otherwise, G should be set to a larger value.

By using equation 5 we computed the annual growth rate for different classes of workloads.
Since we were not able to find any publicly available statistics about evidence collection
and transfer, we considered different classes of synthetic workloads with n new evidence
creations and removals and 10n transfers per year. The results of this analysis are reported
in Table 2. The second column of Table 2 reports the annual growth rate without considering
the headers size overhead, while the third one includes the overhead term computed for
T = 5′. Finally, the fourth column shows the overhead percentages. Even in presence of a
very large number of evidence collection (1 million per year) and transfers (10 millions per
year) the growth rate is around 3 GB per year, which seems acceptable given the capacities
of todays storage devices.

7 Discussion on the configuration of the parameters

Section 6 discusses how the parameters of B-CoC affect its performance with respect to
different aspects, namely the transaction latency, the block headers overhead and the
blockchain growth rate. Here we give a comprehensive discussion on how to set B-CoC
parameters appropriately.

7.1 Setting the block period T

The block period T affects transactions block inclusion latency (see section 6.1.1) and the
block headers overhead (section 6.2), that ultimately affects the blockchain growth rate. As
already discussed in section 6.2, a shorter block period results in a lower maximum block
inclusion latency, but also in a higher block header overhead. To find the best trade-off one
can use equation 4. For example, with our prototype implementation of B-CoC we consider
T = 5′ to be a good trade-off between latency and block header overhead. Indeed, any
further increase of T would result in a small improvement in terms of overhead reduction
compared to the increase of latency (as shown in Figure 3).

7.2 Setting the block gas limit G

The block gas limit affects both term of the transaction latency. In particular in section 6.1,
we describe an analysis that allows to derive a lower bound GL for G, to limit block inclusion
latency and an upper bound GU to limit consensus latency.
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When GL ≤ GU it is safe to set G equal to any value in [GL, GU] to obtain a maximum
block inclusion latency bound by T and the desired maximum consensus latency. On the
other hand, if GL > GU, it is not possible to have both terms of transaction latencies bounded
by the desired values. In such case, one should set G to the best trade-off between block
inclusion latency and consensus latency. A good strategy may be to discard the lower bound
GL in favor of a new lower bound Gavg

L which is set to the average gas rate rather than the
maximum gas rate. Setting G = Gavg

L would result in block inclusion latency bounded by T

on average, with possible periods of increasing latencies, e.g., during peak loads. In this case,
if Gavg

L ≤ GU one should set G = GU, otherwise G = Gavg
L . Indeed, setting a value of G less

than the average gas rate would result in ever increasing transaction latencies.

8 Conclusion

This paper presented B-CoC, a blockchain-based architecture to dematerialise the CoC
process in digital forensics. We also provided a prototype of the B-CoC architecture based
on the Geth implementation of Ethereum nodes. Based on the performance evaluation,
B-CoC showed to be an effective support for the CoC process as it is able to sustain realistic
workload with an acceptable overhead in terms of memory used to store the chain.

The current implementation assumes that the set of validators node is fixed and that
validators are available to sacrifice their privacy when participating in the consensus process.
As a future work, we are investigating how it is possible to manage a dynamic set of validators
and most important we are studying alternatives that allow to increase the level of privacy
for validators not altering other dependability and security attributes.
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A Smart Contract Code

1 pragma solidity ^0.4.22;
2 contract ChainOfCustody {
3 struct Evidence {
4 bytes32 ID;
5 address owner;
6 address creator ;
7 string description ;
8 address [] taddr;
9 uint [] ttime;
10 }
11 mapping ( bytes32 => Evidence ) private evidences ;
12
13 modifier OnlyOwner ( bytes32 ID) {
14 require (msg. sender == evidences [ID]. owner); _;}
15 modifier OnlyCreator ( bytes32 ID) {
16 require (msg. sender == evidences [ID]. creator ); _;}
17 modifier EvidenceExists ( bytes32 ID , bool mustExist ) {
18 bool exists = evidences [ID].ID != 0x0;
19 if ( mustExist )
20 require (ID != 0x0 && exists );
21 else
22 require (! exists );
23 _;}
24
25 function CreateEvidence ( bytes32 ID , string description )
26 public EvidenceExists (ID , false) {
27 evidences [ID].ID = ID;
28 evidences [ID]. owner = msg. sender ;
29 evidences [ID]. creator = msg. sender ;
30 evidences [ID]. description = description ;
31 evidences [ID]. taddr.push(msg. sender );
32 evidences [ID]. ttime.push(now);
33 }
34 function Transfer ( bytes32 ID , address newowner )
35 public OnlyOwner (ID) EvidenceExists (ID , true) {
36 evidences [ID]. owner = newowner ;
37 evidences [ID]. taddr.push( newowner );
38 evidences [ID]. ttime.push(now);
39 }
40 function RemoveEvidence ( bytes32 ID)
41 public OnlyCreator (ID) EvidenceExists (ID , true) {
42 delete evidences [ID];
43 }
44 function GetEvidence ( bytes32 ID)
45 view public returns (bytes32 , address , address ,
46 string , address [], uint []) {
47 return ( evidences [ID].ID , evidences [ID]. owner ,
48 evidences [ID]. creator , evidences [ID]. description ,
49 evidences [ID]. taddr , evidences [ID]. ttime);
50 }
51 }

Listing 1 Smart contract code.
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Abstract
Coin mixing is a prevalent privacy-enhancing technology for cryptocurrency users. In this paper, we
present MixEth, which is a trustless coin mixing service for Turing-complete blockchains. MixEth
does not rely on a trusted setup and is more efficient than any proposed trustless coin tumbler. It
requires only 3 on-chain transactions at most per user and 1 off-chain message. It achieves strong
notions of anonymity and is able to resist denial-of-service attacks. Furthermore the underlying
protocol can also be used to efficiently shuffle ballots, ciphertexts in a trustless and decentralized
manner.
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1 Introduction

Bitcoin [20] and other cryptocurrencies are pseudonymous. Users’ public keys are used as
pseudonyms in these systems. Transactions essentially record a flow of cryptocurrency from
one (or more) public keys to another public key (or more). Flow of cryptocurrency can be
easily tracked due to the open and transparent nature of cryptocurrencies’ transaction ledger.
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Moreover, coherent public keys, which are used by the same user, can be clustered merely by
analyzing the ledger. Recently several tools and algorithms were proposed to diminish users’
privacy [17, 19, 18]. Such deanomyzation attacks are extremely harmful to user privacy,
especially in the case when any of the users’ pseudonyms, public keys, are linked to their
real world identity.

One of the methods to increase users’ privacy is coin mixing or tumbling. This technique
provides k-anonymity or plausible deniability. The idea is that k users deposit 1 coin each
and then in the course of a coin shuffling protocol either a centralized trusted third party
or a smart contract mixes the coins and redistributes them to designated fresh public keys.
This powerful technique gives users superior privacy and anonimity since their new received
coins cannot be linked to them.

Several coin mixing protocols were proposed in the literature both centralized [6, 26, 13]
and decentralized [14, 25, 1, 16, 4]. A major drawback of centralized coin mixing is that
the availability of the tumbler is entirely dependent on the trusted party and in most cases
theft prevention cannot be guaranteed [6, 26]. On the other hand decentralized tumblers
achieve availability, theft prevention and satisfy strong notions of anonymity although they
are considerably heavier computationally. In the following we will solely focus on the problem
of coin mixing on Ethereum [27].

There is no doubt that there exists a tremendous need for privacy overlays for Ethereum
as new tools for transaction deanonymization are getting developed and used [8]. This need
of the Ethereum community for privacy was spectacularly embodied in September, 2017
when for several days 68% of all the transaction volume was controlled by a centralized coin
mixing service [22].

The two major techniques to provide decentralized mixing services for Ethereum are
Möbius, a ring-signature-based solution [16] and Miximus, a zkSNARK-based proposal [1].
Both of them burn tremendous amounts of gas to withdraw funds, which could be prohibitive
for many use cases. Möbius requires 335,714n gas (n is the ring size) while Miximus consumes
1,903,305 gas to verify a zkSNARK proof [2]. As the Ethereum network is congested, ie.
blocks were full during 20182, we argue that it is essential for the network scalability to aim
to create protocols and applications that burn as few gas as possible.

Even though (Ethereum) users and transactions can be deanonymized already on the
network layer [21], we consider network anonymity an orthogonal problem to that of anonymity
on the transaction ledger.

Our contributions. In this paper, we present a trustless and efficient mixing protocol for
Turing-complete blockchains. This protocol can be used to shuffle ciphertexts, ballots or
public keys. The protocol have many use cases: shuffling ElGamal-ciphertexts, decentralized
mixnets, e-voting.

To show the practicality of the protocol, we introduce MixEth, a privacy-enhancing
protocol and a practical tool for Ethereum, to overcome the above mentioned efficiency issues
of Ethereum-based coin-mixers while retaining strong notions of anonymity, mixer availability
and theft prevention already achieved by previous proposals [16, 1]. MixEth requires as few
off-chain messages and on-chain transactions as Möbius and Miximus, meanwhile it burns
significantly less gas.

The intuition behind MixEth is to apply Neff’s verifiable shuffles [23] in the context of
coin mixing. Participants of the tumbler shuffle their public keys in order to break links

2 https://etherscan.io/chart/gasused

https://etherscan.io/chart/gasused
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between sender and recipient public keys. The key insight is that verifying on-chain a Neff
proof about the correctness of a shuffle would be too gas-inefficient, therefore we require
receivers to be online to issue fraud proofs, if and only if an incorrect shuffle was made.
Whenever recipients consider that enough shuffling was executed, they can withdraw their
funds from the mixer.

We also implement MixEth in a state channel to leverage the scalability and instant
finality of off-chain scaling solutions. Furthermore, the MixEth protocol could be used in
any state channel application to mix funds before going back on-chain.

2 Background

In this section we introduce the building bocks required to create our mixing protocol and
MixEth, the trustless coin tumbler.

2.1 Notations
In most cases if it is possible we will stick to the notations used in [16] for sake of uniformity.
Let [] denote the empty tuple. For a tuple t = (x1, . . . , xn) we denote as t[xi] the value
stored at xi. The cardinality of a finite set X is denoted as |X|. In the following let λ ∈ N
be the security parameter and its unary representation is 1λ. If x is uniformly randomly
sampled from a set A we write x $← A. The symmetric group of degree n is written as Sn.
In a cyclic group G, the standardized generator is denoted as G and we use the additive
notation. Secret keys and public keys are denoted as sk and pk respectively (or often times
s and sG), while the user the corresponding key belongs to is indicated in subscript. Let
PKi denote the set of public keys belonging to receivers at a particular shuffling round i.

We use games in definitions and proofs of security. At the end of each game, the main
procedure of game G outputs a single bit. Pr(G) denotes the probability that the output is 1.

2.2 Cryptographic keys in Ethereum
Ethereum uses Elliptic Curve Cryptography (ECC) to secure users’ funds. More specifically,
it uses the secp256k1 curve, the same one as used in Bitcoin. If a user wants to create an
Ethereum address, first they needs to generate a secret key s $← Zn, where n is the order of
secp256k1 over a finite prime field Fp. The corresponding public key will be sG. Note that
any multiples of G is also a generator of curve points since n, the order of the group is also a
prime. Accounts in Ethereum are identified by their addresses which can be obtained by
taking the right most 20 bytes of the Keccak hashed public key [27].

2.3 Verifiable shuffle
Neff introduced the notion of verifiable shuffle [23]. It is a cryptographic protocol allowing
a party to verifiably shuffle a sequence of k modular integers. The output of the shuffle
is another k modular integers multiplied by the same secret multiplier only known to the
shuffler. The shuffler can generate a publicly verifiable zero-knowledge proof to convince the
public that the shuffle was done correctly without disclosing the secret multiplier.

Neff’s mathematical construct is extremely powerful, since it only relies on the intractab-
ility of the Decision Diffie-Hellman (DDH) problem. Therefore, Neff’s verifiable shuffle can
also be applied in groups over elliptic curves.

Tokenomics 2019



13:4 MixEth: Efficient, Trustless Coin Mixing Service for Ethereum

Verifiable shuffle can be used to shuffle a set of public keys, PK = (s1G, s2G . . . , skG).
Note that secret keys are not known to the shuffler.

1. Shuffler commits to C = cG, publishes

PK∗ = (c(sπ−1(1)G), c(sπ−1(2)G), . . . , c(sπ−1(k)G))

where π is a random permutation. Shuffler additionally computes and publishes a
zero-knowledge proof about the correctness of the shuffle. This proof can be made
non-interactive via the Fiat-Shamir heuristic. Let us call C as the shuffling constant.

2. Assuming the proof verifies users gain new public keys with respect to another generator
element, namely cG.

For verifying the proof one needs to compute 8k + 5 exponentiations, however later this
result was ameliorated to 3, 5k exponentiations by Bayer and Groth [3].

So far verifiable shuffles were only applied in voting schemes, we argue that they are
useful in trustless coin mixers as well. The key insight in order to be able to apply verifiable
shuffles in a decentralized, computational-resource-constrained environment, for instance
Ethereum smart contracts, is to dismiss the proof generation for the correctness of the shuffle,
rather we request users to give more succinct proofs for the incorrectness of the shuffle, if
applicable.

2.4 Decision Diffie-Hellman Problem and Chaum-Pedersen Protocol

The Decision Diffie-Hellman assumption (DDH) is a standard cryptographic hardness assump-
tion which underlies the security of many cryptographic protocols. Roughly speaking DDH
states that no efficient algorithm can distinguish between the two distributions (aG, bG, abG)
and (aG, bG, cG), where a, b, c $← Z|G|. It is believed that the DDH assumption holds for
elliptic curves with prime order over a prime field with large embedding factor [5], specifically
DDH holds for the secp256k1 curve, which is used to generate accounts and sign transactions
in Bitcoin and Ethereum among other cryptocurrencies.

Although it is hard to decide whether a triplet is a DDH-triplet without knowing the
multipliers, one could convince anyone in zero-knowledge that a tuple is indeed a DDH-tuple
if one possesses the multipliers.

The language LDDH is defined to be the set of all tuples (G, aG, bG, abG) where G ∈ G
is of order prime q. The Chaum-Pedersen protocol enables a prover P to prove to a verifier
V that (G,A,B,C) ∈ LDDH in zero-knowledge for groups of prime order [9]. The protocol
is organized as follows:

1. V: s $← Zq, then sends commit(s)

2. P: r $← Zq, then sends y1 = rG, y2 = rB.
3. V opens commitment by sending s
4. P sends z = r + as (mod q)
5. V checks zG = y1 + sA (mod q) ∧ zB = y2 + sC (mod q)

Note that in the following a non-interactive version of this protocol will only be considered
that can be achieved by applying the Fiat-Shamir heuristic.
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2.5 ECDSA with arbitrary generator element
Elliptic Curve Digital Signature Algorithm (ECDSA) is a key component of MixEth. ECDSA
is widely deployed in practice, where in most cases signatures are generated and verified with
respect to a fixed generator element of the underlying group [12]. Since all generators are
equal from a security point of view, a single generator element is usually fixed in order to
promote standardization and assist usability.

However, in MixEth, we deploy a somewhat loosened version of ECDSA, where we allow
arbitrary generator elements to be used. Such an extension is indeed needed for withdrawing
funds from the mixer, because shuffled public keys remain public keys with respect to non-
standardized generator elements. Therefore the usual Sig and Vf algorithms for signing and
verifying a messages gets an additional parameter G′ , which is not necessarily the standardized
generator element. Key generation algorithm works as usual (pk, sk) $← KGen(1λ), on the
other hand σ $← Sig(G′ , sk,m) and 0/1← Vf(G′ , pk, σ,m) accept new generators.

In our security proofs we will be relying on the fact that ECDSA is existentially unforgeable
[12], i.e. no efficient adversary could forge a signature on any given message with non-negligible
probability.

Note that although Ethereum does not support natively the verification of ECDSA
signatures with respect to arbitrary generators, however it can easily be implemented in a
smart contract.

2.6 Ethereum
Ethereum is a cryptocurrency built on top of a blockchain. Similarly to Bitcoin, network
participants broadcast transactions in a peer-to-peer network, where transactions are bundled
together into blocks that are appended to a public ledger called blockchain. Only those
specific nodes can append new blocks to the blockchain who previously solved a difficult
cryptographic puzzle. The state of the system consists of the state of different accounts
populating it.

In Ethereum currently there are two types of accounts. The first account type is called
externally owned account. It owns an ECDSA keypair controlled by its user. Private keys
are used to sign transactions. On the other hand there are contract accounts, often smart
contracts, that additionally have persistent storage and contract’s code. Both of the account
types have Ether balances, which is the native currency of the Ethereum network. Ether is
denominated in wei, where 1 ETH = 1018 wei.

Transactions can alter the system’s state by either creating a contract account or by
calling to an existing account. Transactions to externally owned accounts can only transfere
Ether, while transactions to contract accounts can additionally execute the code associated
with them. Codes are executed in a quasi-Turing complete execution environment, called
Ethereum Virtual Machine (EVM).

EVM is quasi-Turing complete, since smart contract’s code cannot run indefinitely due
to the so called gas mechanism. In every transaction the sender needs to pay upfront for the
execution of the contract’s code. The computational complexity of a transaction is measured
in gas, which can be bought for Ether on a price set by the transaction originator, so called
gas price. Therefore the transaction fee is the gas cost multiplied by the gas price. One needs
to specify a gas limit, meaning that they do not allow their transaction to burn more gas
than the limit. If a transaction during execution runs out of gas, then all the state changes
are reverted, while the transaction fee is paid to the miner. If there is gas left after successful
execution, transaction originator is reimbursed. Additionally there exists a block gas limit,
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which limits the number of computational steps fitting in one block. Currently the block
gas limit is cca. 8,000,000 gas. Naturally users of Ethereum are very much incentivized
to minimize the gas cost of their transactions in order to spend as little as possible on
transactions fees. Small gas costs are also crucial from a scalability point of view, since the
less gas burnt for each transaction, the more transaction can fit into a single block.

2.6.1 State channels
Public blockchain’s decentralization comes at an inherent cost in regard to scalability, since
currently each full node verifies the full state of the public ledger. Often times Bitcoin’s (∼ 7
transactions per second (tps)) or Ethereum’s (∼ 15 tps) throughput is compared to that of
Visa’s (∼ 45,000 tps). Blockchains’ scalability issues became an increasingly growing problem
as more and more users adopted the technology. One remarkable example was the launch of
the Cryptokitties game in 2017, when the Ethereum network was congested for a few hours
due to the enormous popularity of the game. Therefore several solutions were proposed to
alleviate aforementioned scalability issues.

One of the major class of these techniques is called off-chain solutions. The insight of
these proposals is that it is not needed to conduct all transactions on the blockchain, since
participants could lock funds on-chain and afterwards securely issue transactions off-chain,
for instance micropayments, with high degree of security and finality. Participants only need
to get back on-chain if there is a dispute about what happened precisely off-chain or they
would like to lock up funds and redeem them on-chain. The first implementation of this idea
was a payment channel network for Bitcoin called Lightning network [24]. The advantage
of the Lightning network is that participants can issue several payments without sending
transactions to the blockchain and paying the sometimes costly transaction fees. Furthermore
users are guaranteed to have instant finality instead of waiting several blocks to confirm their
payments.

State channels are the more general form of payment channels, they can be used not only
for payments, but for any arbitrary state updates on a blockchain, like changes inside a smart
contract. State channels were first described in detail by Jeff Coleman et al.[10]. Since then
several other frameworks for generalised state channels were elaborated [11, 15]. Recently a
case study of the Battleship game was published by Patrick McCorry, Chris Buckland et al.
to evaluate how state channels could contribute in scaling blockchain-based applications [15].

Later in this paper, in Section 6.2 we argue that MixEth can be made more scalable by
implementing shuffling in a state channel.

3 Threat model

3.1 Participants and interactions
In a decentralized tumbler, we have 3 distinct entities: the tumbling smart contract, a set of
senders and a set of receivers. A sender, whom we will call Alice, sends funds to the receiver,
Bob, through the mixer contract in order to break direct links between their public keys.
The list of contract identifiers associated with distinct sessions is denoted as tumblers. In all
the following interactions and algorithms we assume that the public state of the tumbler is
implicitly given as input. Interactions of these entities can be summarized as follows:

tx
$← Deposit(tumblers, skA, pkB): The sender runs this algorithm to deposit a predefined

amount of ether to the receiver’s public key.
0/1← V erifyDeposit(tx): The tumbler contract checks the validity of senders’ deposits.
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ProcessDeposit(tx): upon receiving a valid deposit transaction, the mixing contract
updates its internal state accordingly.

Let PK0 denote the set of public keys to be mixed after the depositing period. Generally
PKi will denote the set of shuffled public keys after i shuffling round. Furthermore let us
set C∗0 = G, the standard generator point of the secp256k1 curve. Similarly C∗i denotes the
shuffling accumulated constant after the ith shuffling round. Shuffles are computed off-chain,
the outputs of the algorithm are written into the on-chain mixer contract. Anyone is allowed
to shuffle the public keys by paying some deposit to the tumbler contract.

PKi+1, C
∗
i+1, proofDDH(G, ciG,C∗i , C∗i+1) $← Shuffle(PKi, C

∗
i , ci, πi). The new shuff-

ling accumulated constant C∗i+1 can be obtained by C∗i+1 = ciC
∗
i . The shuffling accumulated

constant is needed for receivers to audit shuffling and to collect their funds at the end of
the final shuffling period. The permutation πi and the secret multiplier ci from the new
shuffling accumulated constant should be kept private after shuffling, otherwise it is trivial
to track how public keys are shuffled. All the outputs of the Shuffle algorithm are public
and written into the tumbling contract.

Note that we need an additional Chaum-Pedersen proof from the shuffler in order to
prove that the shuffler knows a secret multiplier between the new and the previous shuffling
accumulated constants. If we did not require such proof, a malicious shuffler could break
anonymity just by uploading a random shuffle of the original public keys, the set PK0.

0 ∨ 1← ProcessShuffle(PKi+1, C
∗
i+1, proofDDH(G, ciG,C∗i , C∗i+1)). If the mixing con-

tract is in a shuffling period and the Chaum-Pedersen proof is verified, then (PKi+1, Ci+1)
is written into the contract state, otherwise shuffling transactions is reverted.

0 ∨ 1 ← ChallengeShuffle(PKi, C
∗
i , PKi−1, C

∗
i−1, pkB): receiver B with public key

pkB = sBG can challenge an incorrect shuffle at the ith round by giving a Chaum-Pedersen
zero-knowledge proof that the following tuple is DDH-tuples: (C∗i−1, sBC

∗
i−1, C

∗
i , sBC

∗
i ). If

the proof verifies and sBC∗i /∈ PKi, while sBC∗i−1 ∈ PKi−1, then the challenge is accepted,
otherwise rejected. This proof and checks allow one to be certain that indeed the ith round
is the first round in which the corresponding public key to sB is shuffled incorrectly.

tx
$←WithdrawShufflingDeposit(skB): after a challenging period a shuffler can with-

draw their shuffling deposit from the tumbler contract.
0 ∨ 1← V erifyWitdhrawShufflingDeposit(pkB): if there was no successful challenges

against the shuffler, i.e. their deposit is not slashed, they can withdraw their shuffling deposit.
tx

$←Withdraw(skB , C∗final): after the end of the shuffling period users are allowed to
withdraw their funds. Note that here withdraw transactions will be signed with a modified
version of ECDSA, where not the original generator element G is used as generator rather
C∗final, the final shuffling accumulated constant.

0/1 ← V erifyWithdraw(tx): tumbler checks the validity of a recipient’s withdrawal
transaction.

ProcessWithdraw(tx): upon receiving a valid withdrawal transaction, mixing contract
updates its internal state accordingly.

3.2 Security goals
We are aiming to achieve and prove the same notions of security as the ones defined in [16],
namely anonymity, availability and theft prevention. These notions of anonymity, availability
and theft prevention were introduced in [16], which are included in the Appendices for sake
of self-containedness.
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We are going to assume that at most n− 2 recipients are malicious (n is the number of
recipients). Otherwise, no meaningful notion of security can be achieved. Furthermore we
presume that participants are on-line during the entire course of mixing in order to be able
to monitor and potentially challenge any incorrect shuffle. Finally we assume that honest
recipients will always exercise their rights to shuffle and they do not disclose any private
information used in their shuffles.

Hereby we only give intuition for the notions of security, for formal definitions the astute
reader is referred to the Appendices.

3.2.1 Anonymity
Sender anonymity is achieved if an adversary cannot determine to whom honest senders are
sending funds, assuming that honest senders’ deposits are indistinguishable.

Recipient anonymity is achieved if honest recipients withdrawal transactions are indistin-
guishable.

3.2.2 Availability
It is essential for a coin mixer to provide availability, meaning that honest recipients can
always withdraw their money from the mixer, even if senders and all but one recipients are
compromised.

Adversary A wins the availability security game if they manage to get the tumbler into a
state where honest recipient cannot withdraw their funds.

3.2.3 Theft prevention
We would like to ensure that neither coins can be withdrawn twice, nor withdrawn by anyone
other but the intended recipient.

4 MixEth

MixEth is a coin mixing smart contract allowing parties to efficiently tumble coins in a
trustless manner on Ethereum.

4.1 Initializing the tumbler and depositing period
A MixEth contract living on the Ethereum blockchain at idcontract address must be initialized
with the amt parameter, which denotes the denomination of ether to be mixed. Every sender
must deposit exactly amt ether to a specific public key. Deposits with incorrect ether value
or invalid public key are rejected. Public keys in subsequent deposit transactions are written
into the initPubKeys[] array.

4.2 Shuffling period
After the depositing round, shuffling and challenging rounds are coming after in turns. Each
shuffling round is followed by a challenging round when the correctness of the preceding
shuffle can be challenged by anyone. If a challenge is accepted, then shuffler’s deposit is
lost and given to the challenger, the incorrect shuffle is discarded and shuffling continues
from the set of public keys prior to the discarded shuffle. In the course of a shuffle an honest
shuffler should multiply all the public keys with a secret multiplier c and then permute all the
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transformed public keys. Honest shuffler commits to c by sending back to MixEth the new
shuffling accumulated constant and the shuffled public keys along with a Chaum-Pedersen
proof, proving the correctness of the new shuffling accumulated constant.

Computing the shuffle is done off-chain, see Procedure 1, however the new set of shuffled
public keys, the updated shuffling accumulated constant and the Chaum-Pedersen proof are
loaded into the MixEth contract enabling anyone to verify the shuffle’s correctness and to
continue public key shuffling after the corresponding challenging round. In Procedure 1 the
function generateChaumPedersen(G,A,B,C) denotes a PPT algorithm, which generates
a Chaum-Pedersen proof, proving that logG(A) = logB(C). The mixing contract accepts a
shuffling transaction if and only if the contract is in a shuffling period and the Chaum-Pedersen
proof is verified, otherwise rejects.

Algorithm 1 Off-chain public key shuffling algorithm for the ith shuffling round.

1: PKi ← []
2: c $← Zn
3: C∗i−1 ← read from MixEth contract

4: PKi−1 ← read from MixEth contract the current sequence of shuffled public keys

5: π $← S|PKi−1|
6: for j = 0; j < |PKi−1|; j + + do
7: PKi[π(j)] = c ∗ PKi−1[j]
8: end for
9: C∗i = cC∗i−1
10: proofDDH = generateChaumPedersen(G, cG,C∗i−1, C

∗
i )

Output: (PKi, C
∗
i , proofDDH)

4.3 Challenging period

Every participant should check the correctness of incoming shuffles, therefore sufficient time
should be provided for each challenging round. These are the actions Bob as a receiver needs
to perform to check the correctness of the shuffle at ith round if Bob has secret key sB . In
this case Bob should check whether sBC∗i ∈ PKi or not. If not, Bob should prove to MixEth
that the ith round is indeed the first round, where the shuffled public key corresponding to
sB is compromised. The Chaum-Pedersen proof in the challenge transaction ensures that
the integrity of the shuffled public key in round i− 1st is intact, while shuffled public key is
compromised in the ith round.

Algorithm 2 On-chain verification algorithm of incoming shuffle challenges.
Input(PKi, PKi−1, proofDDH(C∗i−1, sBC

∗
i−1, C

∗
i , sBC

∗
i )

1: b← verifyChaumPedersen(proofDDH(C∗i−1, sBC
∗
i−1, C

∗
i , sBC

∗
i ))

2: b∗ ← 0
3: if b ∧ sBC∗i−1 ∈ PKi−1 ∧ sBC∗i /∈ PKi then
4: b∗ ← 1
5: else
6: b∗ ← 0
7: end if Output: b∗

Tokenomics 2019
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Note that every recipient should perform this check after each shuffling. Noone can check
the inclusion and correctness of shuffled public keys for recipients other than themselves.
This task is non-outsourcable unless one reveals her own private key, which would obviously
lead to loss of funds at the end of the MixEth protocol, since anyone can claim the funds
knowing the corresponding secret key.

In Procedure 2 verifyChaumPedersen(proofDDH) denotes a deterministic polynomial-
time algorithm which verifies the correctness of a Chaum-Pedersen zero-knowledge proof.
The algorithm outputs 1 if the proof is verified, otherwise 0.

4.4 Withdrawing

Let C∗final be the final shuffling accumulated constant. For a recipient B, whose public key
sBG ∈ initPubKeys[], in the final shuffle there will be sBC∗final. The recipient can prove to
MixEth that she knows secret key sB by signing their public key using a modified ECDSA,
which uses C∗final as the generator element instead of the standardized G.

5 Security

Notions of security are proven in the Appendices.

6 Implementation

We implemented MixEth with two different approaches. The first implementation of MixEth
does not apply state channels, all the transactions are made on-chain. This could lead to
unwanted gas costs as the number of corrupted shuffles increases. One of our main motivation
with MixEth is to provide an efficient and scalable coin mixing protocol which uses as little
blockchain resources, storage and gas, as possible. Therefore we also implement and evaluate
MixEth applying state channels, namely shuffling and challenging a shuffle occurs off-chain
and only deposit and withdrawal transactions happen on-chain. Both of the implementations
allow users to mix Ether or other ERC20-compatible, a popular Ethereum token standard,
tokens.

One of the main bottlenecks of coin mixing protocols is the withdrawal transactions’ gas
costs. A Miximus withdrawal transaction burns 1,903,305 gas, regardless of the number of
participating parties. Since the block gas limit is 8,000,266 as of 2018, October 24 only 4
Miximus withdrawal transactions could fit in one Ethereum block. This is even worse for
Möbius, since the gas cost for withdrawing coins from a Möbius mixer contract linearly
increases with the numbers of participants.

Although MixEth is more gas-efficient than Möbius or Miximus, it incurs a higher
time-complexity, ie. recipients need to expect longer delays for funds to arrive since each
challenging period lasts a few blocks of time. Furthermore MixEth requires users to be online
during the course of mixing, in some scenarios this might be a demanding requirement.

All MixEth smart contracts were written in the Solidity language, which is currently
the dominant language for developing Ethereum smart contracts. All MixEth contracts are
available online3.

3 https://github.com/seresistvanandras/MixEth

https://github.com/seresistvanandras/MixEth
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6.1 Fully on-chain implementation

Conceivably mixers would like to minimize off-chain coordination, therefore in our first
implementation of the MixEth protocol, we assumed that all transactions will take place
on-chain. There is only a single off-chain message from receiver to sender, where receiver
delivers their public key to the sender. The rest of the protocol happens entirely on-chain.

On-chain storage is extremely expensive: it requires 20,000 gas to store a 256-bit number,
however if a particular storage slot is already taken and one wants to overwrite it with
a non-zero element then storing only consumes 5000 gas. To minimize on-chain storage
costs, only the last two list of shuffled public keys are stored in the MixEth contract’s
permanent storage. Note that storing only the latest list of shuffled public keys would not
be enough, since honest receivers could not prove to the contract that their shuffled public
key is compromised unless also the last but first list of shuffled keys is also available for the
contract to check the Chaum-Pedersen proof against. Such a storage structure implies that
after uploading the new list of shuffled public keys, a challenging period should proceed in
order to let receivers check the correctness of the shuffle and whether their shuffled public key
is stored in the smart contract. Furthermore we also allow senders to shuffle and deposit new
public keys at the same time, meaning that only 3 on-chain transactions (shuffle, withdraw
mixed coins and withdraw shuffling deposit) are sufficient to complete the protocol.

A great advantage of the fully on-chain version of MixEth is that it allows dynamic
anonymity sets. One could potentially deposit funds to the contract and shuffle public
keys and leave funds in the mixing contract for indefinite amount of time. As soon as the
anonymity set is large enough a receiver could withdraw their assets. A receiver in a MixEth
contract with N senders could withdraw their funds after N ′ shuffling rounds, where N ′

is arbitrary. This dynamic nature of the contract could even lead to a single monolithic
MixEth contract instead of having multiple MixEth contracts with significantly fragmented
anonymity sets. A single MixEth contract is able to support the mixing of ether and ERC-20
compatible tokens as well. However note that the gas complexity of shuffling transactions
grows linearly in the number of participants, therefore the fully on-chain implementation is
not capable to support extremely large anonymity sets with participants more than a few
hundreds.

6.2 State channel implementation

We have also adapted MixEth to operate within a state channel. We wrote the implementation
within the guidelines of the Counterfactual framework [10]. This allowed us to delegate the
processes of setup, liveness disputes and finalisation to the framework so that we could focus
on adapting the application logic. Unlike the on-chain implementation the state channel
implementation requires that the set of participants be agreed upon upfront. In state channels
each update to the state needs to be signed by all other participants, this means that state
channel applications are inherently at least O(n). To co-ordinate these off-chain updates
the Counterfactual framework enforces that all applications be turn based, introducing a
turn taker for each turn who may propose a new state. The original MixEth implementation
was not turn based so we have adapted the application to this constraint, an example of
this adaptation is the challenge round. In the on-chain implementation a time period is
allowed during which any participant may challenge, we have adapted this by proceeding
turn-based through the participants offering each the chance to either challenge or pass. In
the case of a breakdown in cooperation in the channel, a liveness fault, it has been shown
that all operations succeeding the cooperation breakdown must proceed on chain[15] or
be abandoned at some financial cost specified by the application, meaning that if every
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shuffle were to be succeeded by a challenge round each participant would be forced, by
threat this lost deposit, to make an on-chain transaction after each shuffle, incurring O(n)
on chain operations. To mitigate this we removed the challenge after each round and instead
introduced a challenge round that takes place after all shuffles have completed, during this
round any of the preceding shuffles may be challenged.

Given these adaptations the application proceeds as follows, all participants including
senders, shufflers and receivers, deposit funds in a mutli-signature wallet compatible with
the Counterfactual framework, they then follow the installation protocols specified by
the framework to install the adapted MixEth logic. Afterwards each participant signs a
transaction that transfers an equal amount to each withdrawer from the multi-sig, dependent
on correct execution of the channelised MixEth application logic. This application logic
proceeds as follows: each sender names a public key of a shuffler as in the deposit stage of
the on-chain application, then each shuffler takes it in turn to shuffle. After all shuffles have
taken place each withdrawer is given a turn to either declare fraud or no-fraud on any shuffle
round. Finally each withdrawer then provides proof of ownership by submitting a valid
signature on the modified ECDSA scheme. If any of these steps does not occur, or does not
occur correctly, the protocol aborts and the conditional transfer does not occur. In this case
the perpetrator loses a deposit, either through fraud proof or through failure to take their
turn when state is published on-chain. A further modification would be to distribute the
slashed deposit to each of the other participants, compensating them for their lost time and
the gas costs associated with proving the fault of the other party. Following this protocol the
on-chain transactions are now reduced to: one transaction from each participant to deposit
funds into the multi-sig, and a set of transactions that send funds from the multi-sig to each
of the withdrawers and deposits back to each of the other participants.

Table 1 Proof-of-concept implementation gas cost results. Expect further improvements.
MixEthChannel refers to the implementation which leverages state channels for shuffling and
challenging periods.

Deployment Deposit Shuffle Withdraw
Shuffle upload Challenge

Möbius [16] 1,046,027 76,123 0 0 335,714n
Miximus [1] 1,751,378 732,815 0 0 1,903,305
MixEth 5,395,945 99,254 366,216 + 10,000n 227,563 113,265
MixEthChannel 672,276 21,000 0 0 26,749

7 Related work

Möbius was the very first trustless coin mixer designed for Ethereum[16]. Authors of Möbius
provided formal definitions of various notions of security such as anonymity, theft prevention
and mixer availability. These properties could be used to evaluate and compare existing and
future proposals from a security perspective. Möbius is a ring-signature-based trustless coin
mixer with minimal on-chain transaction complexity: users of Möbius just need to create a
deposit and a withdraw transaction. However the gas cost of the withdrawal transaction
increases linearly in the number of receivers, which limits the size of possible anonymity sets.
No more than 24 reciever could use Möbius with current cca.8,000,000 block gas limit. If
more people tried to use the mixer funds would be stucked in the mixer contract, since the
gas costs of withdrawal transactions would be greater than the block gas limit.
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Miximus is a zkSNARK-based mixer for Ethereum[1]. It uses zkSNARKs to conceal the
mapping between depositors and recipients. A depositor creates a leaf in a Merkle-tree. A
depositor needs to exchange the preimage of the leaf with the recipient. Later, a recipient
could prove to the Miximus contract that they know one of the preimages of a certain,
undisclosed leaf. So called nullifiers enable recipients to withdraw funds once and only once.
The gas costs of depositing and withdrawing funds from a Miximus mixer is independent of
the number of participants. However there are disadvantages of this approach; Miximus only
provides anonymity against outsiders, since if Alice funds to Bob via Miximus, Alice will know
when Bob made the withdrawal transaction. Another, more severe limitation of Miximus is
the trusted setup required for generating the proving key for the zkSNARK. If this trusted
setup is compromised, the deployer of the contract, who generated the proving key could
potentially steal funds from the mixer. Although, this issue could be amended somehow via a
multi-party computation (MPC) further increasing the off-chain communication complexitiy
of Miximus.

As Table 2 demonstrates, both Möbius and Miximus require 2 on-chain transactions, while
MixEth requires 3. In spite of this seemingly added complexity, the 3 on-chain transactions
to complete the MixEth protocol (deposit, shuffle, withdraw) consume significantly less gas
than those (deposit, verify linkable ring signature/zkSNARK) of Möbius and Miximus, see
Table 1.

Table 2 Number of on-chain transactions and off-chain messages per a single participant required
to run a certain coin mixer protocol. Note that in case of Miximus if one wants to avoid the trusted
setup for the zkSNARK, then they need to perform a secure multi-party computation protocol to
trust-minimize the proving key generation.

#Off-chain messages #Transactions

Centralized

Mixcoin [6] 2 2
Blindcoin [26] 4 2
TumbleBit [13] 12 4

Decentralized

Coinjoin [14] O(n2) 1
Coinshuffle [25] O(n) 1
XIM [4] 0 7
Möbius [16] 2 2
Miximus [1] 1+MPC 2
MixEth 1 3
MixEthChannel O(n) 2
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A Formal definitions of security

Hereby we formally define the notions of security MixEth is aiming to achieve.

In the security definitions and games introduced by [16] adversary A might have access
to the following oracles. CORR enables A to corrupt a sender or receiver by learning the
secret key of any party l of their choice. Oracle access to AD or AW allow A to deposit or
withdraw respectively from tumbler session j. Furthermore A might instruct honest senders
or receivers to deposit or withdraw from tumbler session j by using oracles HD and HW. In
the following C denotes the set of corrupted parties, while the list of honest deposits and
withdrawals are denotes as Hd and Hw respectively.

These oracles are formally defined as follows:

AD(tx,j)

b← V erifyDeposit(tumblers[j], tx)
if (b) ProcessDeposit(tumblers[j], tx)
return b

AW(tx,j)

b← V erifyWithdraw(tumblers[j], tx)
if (b) ProcessWithdraw(tumblers[j], tx)
return b

CORR(l)

C = C.push(pkBl )
return skBl

HD(i,j,l)

tx
$← Deposit(skAi , pkBl )

Hd = Hd.push(tx)
ProcessDeposit(tumblers[j], tx)
return tx

HW(j,l)

if (pkBl /∈ tumblers[j].keysB) return ⊥

tx
$← Deposit(skAi , pkBl )

Hw = Hw.push(j, l, tx)
ProcessWithdraw(tumblers[j], tx)
return tx
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A.1 Anonymity

I Definition 1. Define Advd−anonmix,A (λ) = 2 Pr[Gd−anonmix,A (λ)] − 1 for d ∈ {dep, with}, where
these games are defined as follows:

MAIN Gdep−anonmix,A (λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKA ← {pki}ni=1;C,Hd, tumblers← ∅

b
$← {0, 1}

(state, j, pk, i0, i1) $← ACORR,AD,HD,AW (1λ,PKA)

tx
$← Deposit(tumblers[j], skAlb

, pk)

b
′ $← ACORR,AD,HD,AW (state, tx)

return b = b
′

MAIN Gwith−anonmix,A (λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hd, tumblers← ∅

b
$← {0, 1}

(state, j, pk, l0, l1) $← ACORR,AD,HD,AW (1λ,PKB)
PK← tumblers[j].keysB
if(pkBl0

/∈ PK) ∨ (pkBl1
/∈ PK) return 0

tx
$←Withdraw(tumblers[j], skBlb

)

b
′ $← ACORR,AD,HD,AW (state, tx)
if(pklb ∈ C for b ∈ {0, 1}) return 0
if((j, lb, ·)) ∈ Hw for b ∈ {0, 1}) return 0

return b = b
′

Then the tumbler satisfies sender or recipient anonymity if for all PPT adversaries A there
exists a negligible function ν(·) such that Advdep−anonmix,A (λ) < ν(λ) or Advwith−anonmix,A (λ) < ν(λ)
respectively.

A.2 Availability

I Definition 2. Define Advavailmix,A(λ) = Pr[Gavailmix,A(λ)], where the game is defined as follows:

MAIN Gavailmix,A(λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hw ← ∅

(l, j) $← ACORR,AD,HW,AW (1λ,PKB)
b← VerifyWithdraw(tumblers[j],Withdraw(skl))
if((pkl ∈ C) ∨ ((j, l, ·) ∈ Hw)) return 0
return (b = 0) ∧ (pkl ∈ tumblers[j].keysB)

Then the tumbler satisfies availability if for all PPT adversaries A there exists a negligible
function ν(·) such that Advavailmix,A(λ) < ν(λ).
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A.3 Theft prevention
I Definition 3. Define Advtheftmix,A(λ) = Pr[Gtheftmix,A(λ)], where the game is defined as follows:

MAIN Gtheftmix,A(λ)

(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hw, contract← ∅

(tx, j) $← ACORR,AD,AW,HW (1λ,PKB)
if(tumblers[j].keysB 6⊂ PKB \ C) return 0
return VerifyWithdraw(tumblers[j], tx)

Then the tumbler satisfies theft prevention if for all PPT adversaries A there exists a
negligible function ν(·) such that Advtheftmix,A(λ) < ν(λ).

B Proofs of security

This section provides informal ideas to the security proofs for the notions of security introduced
formally above and informally in Section 3.2.

B.1 Recipient anonymity
The withdrawing transaction for recipient B sends funds to the public key sBC∗. This public
key does not reveal any links to the original sBG in case if at least one honest sender shuffled
and the DDH assumption holds. Adversary can only distinguish between honest recipients
public keys with negligible probability. See reduction proof in Appendix C.

B.2 Availability
If an adversary is able to destroy an honest recipient’s funds’ availability, it implies that
adversary A either breaks the completeness of the Chaum-Pedersen protocol or successfully
launched an eclipse attack against the honest recipient, who cannot send any transactions to
honest Ethereum peers.

B.3 Theft prevention
If an adversary is able to steal funds from other users than it would imply that they managed
to create a valid message/signature, (m,σ) pair for the final shuffled public key of an honest
recipient without having access to the secret key of the honest recipient. This contradicts
to the assumption that ECDSA is existentially unforgeable. Reduction proof is enclosed in
Appendix E.

C Proof of Anonymity

Hereby we show that if there exists an adversary A who is able to break withdrawal anonymity
defined in Section 3.2.1, then there exists another adversary B who is able to break the DDH
assumption.

Towards contradiction let us assume that the recipient anonymity does not hold. Let
us assume that the challenge to the DDH-adversary B is of the form (sG, cG, c0G). In a
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c1
$← Zp

PKB = (c0G, c1G)

b
$← {0, 1}

tx
$←Withdraw(tumblers[j], skBcb

)

Input: PKB , tx

Output: b
′

A

B

(sG, cG, c0G)

¬b¬b′ + b
Figure 1 An illustration for the reduction of withdrawal anonymity to the DDH assumption.

DDH-game the adversary’s goal is to decide whether c0G is a random group element or
it equals to scG. At the end of the DDH-game adversary outputs 1 if c0G = scG and 0
otherwise. Adversary B generates uniformly random public key c1G and invokes A with the
set PKB = (c0C

∗, c1C
∗), then B forwards PKB to A. Then a withdrawal transaction occurs

from cbG. After polynomial-time A outputs b′ and B will output ¬b′ . If A outputs 0 and
b = b

′ , this signals to B that c0G might potentially be of the form scG = c0G i.e. it is a
DDH tuple, therefore B outputs 1. In all the other cases B outputs a random bit. Therefore
we have that B has an adventage in their DDH-game if and only if A wins their Gwith,anonmix,A
security game. Since we assumed that recipient anonymity does not hold we have that

Pr[DDHB] = 1
2 + 1

2 ∗ Pr[Gwith,anonmix,A ] = 1
2 + 1

2 ∗ non-negl(λ),

which contradicts to the DDH assumption.

D Proof of Availability

The only possibility for an adversary to threaten the availability of funds for an honest
receiver if they create an incorrect shuffle, where honest receiver’s shuffled public key is
compromised. Since the Chaum-Pedersen zero-knowledge protocol is complete, an honest
receiver is alway able to create a Chaum-Pedersen proof, which demonstrates to the contract
that their shuffled public key is compromised. Therefore we have for any PPT A and ∀λ ∈ N
that,

Pr[Gavailmix,A] = 0 < negl(λ).

E Proof of Theft Prevention

Towards contradiction we assume that there exists an adversary A, who is able to break
the theft prevention property introduced in Section 3.2.3 with non-negligible probability.
Using such an adversary as a subroutine we could create another efficient adversary B who is
able to break the existential unforgeability of ECDSA. The input of the forgeability game
is the security parameter which is forwarded to A along with n randomly generated public
keys. By assumption A outputs with non-negligible probability valid withdraw transaction
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(pki, ski)
$← KGen(1λ) ∀i ∈ [n]

PKB ← {pki}ni=1;C,Hω, contract← ∅

Input: (1λ, PKB)

(tx, j) $← ACORR,AD,AW,HW (1λ, PKB)
Output: (tx, j)

A

B

1λ

(tx, σtx)
Figure 2 An illustration for the reduction of theft prevention to the existentially unforgeability

of ECDSA.

belonging to one of the public keys in the mixer. A valid withdraw transaction is a (tx, σtx)
pair, where σtx is a valid signature on transaction tx. Adversary B outputs the withdraw
transaction and the ECDSA signature on it. B wins the forgeability game if and only if A
wins their Gtheftmix,A game:

Pr[ForgeECDSA,B] = Pr[Gtheftmix,A] = 1
λα
,

for some fixed α. This contradicts to the assumption that ECDSA is existentially unforgeable.

F Extensions and improvements

MixEth is not fully compatible with the current EVM, however it could be deployed with
a workaround. A recipient could ask another party or service to send a signed transaction
including a signature which uses the modified version of ECDSA, where the generator element
is the shuffling accumulated constant. MixEth could check this signature and send out funds
to a fresh Ethereum address given in the withdraw transaction.

In the current design of MixEth if sender, Alice and receiver, Bob would like to use the
mixer several times, Bob needs to share his receiver address in a secure communication
channel with Alice as many times as he would like to receive payments. This communication
overhead could be overcome by applying stealth addresses, where Bob needs to share once
his public master key with Alice in order to receive arbirtary number of payments from her.

F.0.1 Ethereum account abstraction
Unfortunately, neither Möbius nor Miximus can be deployed on the present-day Ethereum.
When users of the coin mixing contract, either Möbius or Miximus would like to withdraw
their funds they cannot do this from a fresh address, since it does not hold any ether. Since
as of now only the sender of a transaction can pay for the gas fee, users cannot withdraw
their funds unless they ask someone to fund their fresh address.

Another solution for this problem is the Ethereum Improvement Proposal (EIP) 86
suggested by Nick Johnson and Vitalik Buterin [7]. EIP86 permits receivers of a transaction
paying the gas fee. This would certainly enable a functional Möbius and Miximus as well,
since the tumbling contract could pay for the withdrawal transactions’ gas fee, eliminating
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the previous workaround to unlinkably fund freshly mixed addresses. Additionally, EIP86
also allows contracts and accounts to define their own digital signature algorithms. This
means that users are no longer required to sign transactions with Elliptic Curve Digital
Signature Algorithm (ECDSA). Moreover if EIP86 or something similar is implemented,
which is expected in 2019, MixEth is also made viable.

F.1 Minimizing shuffle transactions with trusted execution
environments

One might effectively minimize the number of necessary shuffling rounds to 1. If a Trusted
Execution Environment (TEE), e.g., Intel SGX is used to generate the shuffling transaction,
then even a single shuffling transaction would suffice to provide the same level of anonymity
as if every participant shuffles the public keys. Any of the participants could upload the
TEE-generated shuffling transaction, while the MixEth contract could check that indeed the
shuffling transaction was generated by a TEE. Such a shortcut would make our scheme even
more practical and efficient, however it would subsume trust in Intel regarding the security
and confidentiality of the TEE.
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